This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group sum operation over the pair { 1 , 2 } . (Contributed by AV, 14-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumpr12val.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumpr12val.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumpr12val.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| gsumpr12val.f | ⊢ ( 𝜑 → 𝐹 : { 1 , 2 } ⟶ 𝐵 ) | ||
| Assertion | gsumpr12val | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumpr12val.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumpr12val.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | gsumpr12val.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 4 | gsumpr12val.f | ⊢ ( 𝜑 → 𝐹 : { 1 , 2 } ⟶ 𝐵 ) | |
| 5 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 6 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → 2 = ( 1 + 1 ) ) |
| 8 | 1 2 3 5 7 4 | gsumprval | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) |