This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzpr | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... ( 𝑀 + 1 ) ) = { 𝑀 , ( 𝑀 + 1 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | elfzp1 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑚 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ↔ ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ∨ 𝑚 = ( 𝑀 + 1 ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑀 ∈ ℤ → ( 𝑚 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ↔ ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ∨ 𝑚 = ( 𝑀 + 1 ) ) ) ) |
| 4 | fzsn | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) | |
| 5 | 4 | eleq2d | ⊢ ( 𝑀 ∈ ℤ → ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↔ 𝑚 ∈ { 𝑀 } ) ) |
| 6 | velsn | ⊢ ( 𝑚 ∈ { 𝑀 } ↔ 𝑚 = 𝑀 ) | |
| 7 | 5 6 | bitrdi | ⊢ ( 𝑀 ∈ ℤ → ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ↔ 𝑚 = 𝑀 ) ) |
| 8 | 7 | orbi1d | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑚 ∈ ( 𝑀 ... 𝑀 ) ∨ 𝑚 = ( 𝑀 + 1 ) ) ↔ ( 𝑚 = 𝑀 ∨ 𝑚 = ( 𝑀 + 1 ) ) ) ) |
| 9 | 3 8 | bitrd | ⊢ ( 𝑀 ∈ ℤ → ( 𝑚 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ↔ ( 𝑚 = 𝑀 ∨ 𝑚 = ( 𝑀 + 1 ) ) ) ) |
| 10 | vex | ⊢ 𝑚 ∈ V | |
| 11 | 10 | elpr | ⊢ ( 𝑚 ∈ { 𝑀 , ( 𝑀 + 1 ) } ↔ ( 𝑚 = 𝑀 ∨ 𝑚 = ( 𝑀 + 1 ) ) ) |
| 12 | 9 11 | bitr4di | ⊢ ( 𝑀 ∈ ℤ → ( 𝑚 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ↔ 𝑚 ∈ { 𝑀 , ( 𝑀 + 1 ) } ) ) |
| 13 | 12 | eqrdv | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... ( 𝑀 + 1 ) ) = { 𝑀 , ( 𝑀 + 1 ) } ) |