This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptfzcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummptfzcl.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsummptfzcl.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| gsummptfzcl.i | ⊢ ( 𝜑 → 𝐼 = ( 𝑀 ... 𝑁 ) ) | ||
| gsummptfzcl.e | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ) | ||
| Assertion | gsummptfzcl | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfzcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummptfzcl.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 3 | gsummptfzcl.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | gsummptfzcl.i | ⊢ ( 𝜑 → 𝐼 = ( 𝑀 ... 𝑁 ) ) | |
| 5 | gsummptfzcl.e | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) = ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) | |
| 8 | 7 | fmpt | ⊢ ( ∀ 𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ↔ ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ) |
| 9 | 4 | feq2d | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ↔ ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) ) |
| 10 | 8 9 | bitrid | ⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ↔ ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) ) |
| 11 | 5 10 | mpbid | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) |
| 12 | 1 6 2 3 11 | gsumval2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) ) = ( seq 𝑀 ( ( +g ‘ 𝐺 ) , ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) ) ‘ 𝑁 ) ) |
| 13 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ∀ 𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ) |
| 14 | 13 8 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ) |
| 15 | 4 | eqcomd | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = 𝐼 ) |
| 16 | 15 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑥 ∈ 𝐼 ) ) |
| 17 | 16 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ 𝐼 ) |
| 18 | 14 17 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 19 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 ∈ Mnd ) |
| 20 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 21 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 22 | 1 6 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 23 | 19 20 21 22 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 24 | 3 18 23 | seqcl | ⊢ ( 𝜑 → ( seq 𝑀 ( ( +g ‘ 𝐺 ) , ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) ) ‘ 𝑁 ) ∈ 𝐵 ) |
| 25 | 12 24 | eqeltrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) ) ∈ 𝐵 ) |