This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptfzcl.b | |- B = ( Base ` G ) |
|
| gsummptfzcl.g | |- ( ph -> G e. Mnd ) |
||
| gsummptfzcl.n | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| gsummptfzcl.i | |- ( ph -> I = ( M ... N ) ) |
||
| gsummptfzcl.e | |- ( ph -> A. i e. I X e. B ) |
||
| Assertion | gsummptfzcl | |- ( ph -> ( G gsum ( i e. I |-> X ) ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfzcl.b | |- B = ( Base ` G ) |
|
| 2 | gsummptfzcl.g | |- ( ph -> G e. Mnd ) |
|
| 3 | gsummptfzcl.n | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 4 | gsummptfzcl.i | |- ( ph -> I = ( M ... N ) ) |
|
| 5 | gsummptfzcl.e | |- ( ph -> A. i e. I X e. B ) |
|
| 6 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 7 | eqid | |- ( i e. I |-> X ) = ( i e. I |-> X ) |
|
| 8 | 7 | fmpt | |- ( A. i e. I X e. B <-> ( i e. I |-> X ) : I --> B ) |
| 9 | 4 | feq2d | |- ( ph -> ( ( i e. I |-> X ) : I --> B <-> ( i e. I |-> X ) : ( M ... N ) --> B ) ) |
| 10 | 8 9 | bitrid | |- ( ph -> ( A. i e. I X e. B <-> ( i e. I |-> X ) : ( M ... N ) --> B ) ) |
| 11 | 5 10 | mpbid | |- ( ph -> ( i e. I |-> X ) : ( M ... N ) --> B ) |
| 12 | 1 6 2 3 11 | gsumval2 | |- ( ph -> ( G gsum ( i e. I |-> X ) ) = ( seq M ( ( +g ` G ) , ( i e. I |-> X ) ) ` N ) ) |
| 13 | 5 | adantr | |- ( ( ph /\ x e. ( M ... N ) ) -> A. i e. I X e. B ) |
| 14 | 13 8 | sylib | |- ( ( ph /\ x e. ( M ... N ) ) -> ( i e. I |-> X ) : I --> B ) |
| 15 | 4 | eqcomd | |- ( ph -> ( M ... N ) = I ) |
| 16 | 15 | eleq2d | |- ( ph -> ( x e. ( M ... N ) <-> x e. I ) ) |
| 17 | 16 | biimpa | |- ( ( ph /\ x e. ( M ... N ) ) -> x e. I ) |
| 18 | 14 17 | ffvelcdmd | |- ( ( ph /\ x e. ( M ... N ) ) -> ( ( i e. I |-> X ) ` x ) e. B ) |
| 19 | 2 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> G e. Mnd ) |
| 20 | simprl | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> x e. B ) |
|
| 21 | simprr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> y e. B ) |
|
| 22 | 1 6 | mndcl | |- ( ( G e. Mnd /\ x e. B /\ y e. B ) -> ( x ( +g ` G ) y ) e. B ) |
| 23 | 19 20 21 22 | syl3anc | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` G ) y ) e. B ) |
| 24 | 3 18 23 | seqcl | |- ( ph -> ( seq M ( ( +g ` G ) , ( i e. I |-> X ) ) ` N ) e. B ) |
| 25 | 12 24 | eqeltrd | |- ( ph -> ( G gsum ( i e. I |-> X ) ) e. B ) |