This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptfzcl.b | ||
| gsummptfzcl.g | |||
| gsummptfzcl.n | |||
| gsummptfzcl.i | |||
| gsummptfzcl.e | |||
| Assertion | gsummptfzcl |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfzcl.b | ||
| 2 | gsummptfzcl.g | ||
| 3 | gsummptfzcl.n | ||
| 4 | gsummptfzcl.i | ||
| 5 | gsummptfzcl.e | ||
| 6 | eqid | ||
| 7 | eqid | ||
| 8 | 7 | fmpt | |
| 9 | 4 | feq2d | |
| 10 | 8 9 | bitrid | |
| 11 | 5 10 | mpbid | |
| 12 | 1 6 2 3 11 | gsumval2 | |
| 13 | 5 | adantr | |
| 14 | 13 8 | sylib | |
| 15 | 4 | eqcomd | |
| 16 | 15 | eleq2d | |
| 17 | 16 | biimpa | |
| 18 | 14 17 | ffvelcdmd | |
| 19 | 2 | adantr | |
| 20 | simprl | ||
| 21 | simprr | ||
| 22 | 1 6 | mndcl | |
| 23 | 19 20 21 22 | syl3anc | |
| 24 | 3 18 23 | seqcl | |
| 25 | 12 24 | eqeltrd |