This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If one factor in a finite group sum of the multiplicative group of a commutative ring is 0, the whole "sum" (i.e. product) is 0. (Contributed by AV, 3-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummgp0.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| gsummgp0.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| gsummgp0.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| gsummgp0.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| gsummgp0.a | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) | ||
| gsummgp0.e | ⊢ ( ( 𝜑 ∧ 𝑛 = 𝑖 ) → 𝐴 = 𝐵 ) | ||
| gsummgp0.b | ⊢ ( 𝜑 → ∃ 𝑖 ∈ 𝑁 𝐵 = 0 ) | ||
| Assertion | gsummgp0 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ 𝐴 ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummgp0.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| 2 | gsummgp0.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | gsummgp0.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 4 | gsummgp0.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 5 | gsummgp0.a | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) | |
| 6 | gsummgp0.e | ⊢ ( ( 𝜑 ∧ 𝑛 = 𝑖 ) → 𝐴 = 𝐵 ) | |
| 7 | gsummgp0.b | ⊢ ( 𝜑 → ∃ 𝑖 ∈ 𝑁 𝐵 = 0 ) | |
| 8 | difsnid | ⊢ ( 𝑖 ∈ 𝑁 → ( ( 𝑁 ∖ { 𝑖 } ) ∪ { 𝑖 } ) = 𝑁 ) | |
| 9 | 8 | eqcomd | ⊢ ( 𝑖 ∈ 𝑁 → 𝑁 = ( ( 𝑁 ∖ { 𝑖 } ) ∪ { 𝑖 } ) ) |
| 10 | 9 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → 𝑁 = ( ( 𝑁 ∖ { 𝑖 } ) ∪ { 𝑖 } ) ) |
| 11 | 10 | mpteq1d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( 𝑛 ∈ 𝑁 ↦ 𝐴 ) = ( 𝑛 ∈ ( ( 𝑁 ∖ { 𝑖 } ) ∪ { 𝑖 } ) ↦ 𝐴 ) ) |
| 12 | 11 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ 𝐴 ) ) = ( 𝐺 Σg ( 𝑛 ∈ ( ( 𝑁 ∖ { 𝑖 } ) ∪ { 𝑖 } ) ↦ 𝐴 ) ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 14 | 1 13 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝐺 ) |
| 15 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 16 | 1 15 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝐺 ) |
| 17 | 1 | crngmgp | ⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ CMnd ) |
| 18 | 3 17 | syl | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → 𝐺 ∈ CMnd ) |
| 20 | diffi | ⊢ ( 𝑁 ∈ Fin → ( 𝑁 ∖ { 𝑖 } ) ∈ Fin ) | |
| 21 | 4 20 | syl | ⊢ ( 𝜑 → ( 𝑁 ∖ { 𝑖 } ) ∈ Fin ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( 𝑁 ∖ { 𝑖 } ) ∈ Fin ) |
| 23 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → 𝜑 ) | |
| 24 | eldifi | ⊢ ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) → 𝑛 ∈ 𝑁 ) | |
| 25 | 23 24 5 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 26 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → 𝑖 ∈ 𝑁 ) | |
| 27 | neldifsnd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ¬ 𝑖 ∈ ( 𝑁 ∖ { 𝑖 } ) ) | |
| 28 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 29 | 3 28 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 30 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 31 | 13 2 | mndidcl | ⊢ ( 𝑅 ∈ Mnd → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 32 | 29 30 31 | 3syl | ⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 34 | eleq1 | ⊢ ( 𝐵 = 0 → ( 𝐵 ∈ ( Base ‘ 𝑅 ) ↔ 0 ∈ ( Base ‘ 𝑅 ) ) ) | |
| 35 | 34 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( 𝐵 ∈ ( Base ‘ 𝑅 ) ↔ 0 ∈ ( Base ‘ 𝑅 ) ) ) |
| 36 | 33 35 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → 𝐵 ∈ ( Base ‘ 𝑅 ) ) |
| 37 | 6 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) ∧ 𝑛 = 𝑖 ) → 𝐴 = 𝐵 ) |
| 38 | 14 16 19 22 25 26 27 36 37 | gsumunsnd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( 𝐺 Σg ( 𝑛 ∈ ( ( 𝑁 ∖ { 𝑖 } ) ∪ { 𝑖 } ) ↦ 𝐴 ) ) = ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 𝐵 ) ) |
| 39 | oveq2 | ⊢ ( 𝐵 = 0 → ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 𝐵 ) = ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 0 ) ) | |
| 40 | 39 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 𝐵 ) = ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 0 ) ) |
| 41 | 24 5 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 42 | 41 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 43 | 14 18 21 42 | gsummptcl | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 45 | 13 15 2 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 46 | 29 44 45 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 47 | 40 46 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 𝐵 ) = 0 ) |
| 48 | 12 38 47 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ 𝐴 ) ) = 0 ) |
| 49 | 7 48 | rexlimddv | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ 𝐴 ) ) = 0 ) |