This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If one factor in a finite group sum of the multiplicative group of a commutative ring is 0, the whole "sum" (i.e. product) is 0. (Contributed by AV, 3-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummgp0.g | |- G = ( mulGrp ` R ) |
|
| gsummgp0.0 | |- .0. = ( 0g ` R ) |
||
| gsummgp0.r | |- ( ph -> R e. CRing ) |
||
| gsummgp0.n | |- ( ph -> N e. Fin ) |
||
| gsummgp0.a | |- ( ( ph /\ n e. N ) -> A e. ( Base ` R ) ) |
||
| gsummgp0.e | |- ( ( ph /\ n = i ) -> A = B ) |
||
| gsummgp0.b | |- ( ph -> E. i e. N B = .0. ) |
||
| Assertion | gsummgp0 | |- ( ph -> ( G gsum ( n e. N |-> A ) ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummgp0.g | |- G = ( mulGrp ` R ) |
|
| 2 | gsummgp0.0 | |- .0. = ( 0g ` R ) |
|
| 3 | gsummgp0.r | |- ( ph -> R e. CRing ) |
|
| 4 | gsummgp0.n | |- ( ph -> N e. Fin ) |
|
| 5 | gsummgp0.a | |- ( ( ph /\ n e. N ) -> A e. ( Base ` R ) ) |
|
| 6 | gsummgp0.e | |- ( ( ph /\ n = i ) -> A = B ) |
|
| 7 | gsummgp0.b | |- ( ph -> E. i e. N B = .0. ) |
|
| 8 | difsnid | |- ( i e. N -> ( ( N \ { i } ) u. { i } ) = N ) |
|
| 9 | 8 | eqcomd | |- ( i e. N -> N = ( ( N \ { i } ) u. { i } ) ) |
| 10 | 9 | ad2antrl | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> N = ( ( N \ { i } ) u. { i } ) ) |
| 11 | 10 | mpteq1d | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( n e. N |-> A ) = ( n e. ( ( N \ { i } ) u. { i } ) |-> A ) ) |
| 12 | 11 | oveq2d | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( G gsum ( n e. N |-> A ) ) = ( G gsum ( n e. ( ( N \ { i } ) u. { i } ) |-> A ) ) ) |
| 13 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 14 | 1 13 | mgpbas | |- ( Base ` R ) = ( Base ` G ) |
| 15 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 16 | 1 15 | mgpplusg | |- ( .r ` R ) = ( +g ` G ) |
| 17 | 1 | crngmgp | |- ( R e. CRing -> G e. CMnd ) |
| 18 | 3 17 | syl | |- ( ph -> G e. CMnd ) |
| 19 | 18 | adantr | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> G e. CMnd ) |
| 20 | diffi | |- ( N e. Fin -> ( N \ { i } ) e. Fin ) |
|
| 21 | 4 20 | syl | |- ( ph -> ( N \ { i } ) e. Fin ) |
| 22 | 21 | adantr | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( N \ { i } ) e. Fin ) |
| 23 | simpl | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ph ) |
|
| 24 | eldifi | |- ( n e. ( N \ { i } ) -> n e. N ) |
|
| 25 | 23 24 5 | syl2an | |- ( ( ( ph /\ ( i e. N /\ B = .0. ) ) /\ n e. ( N \ { i } ) ) -> A e. ( Base ` R ) ) |
| 26 | simprl | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> i e. N ) |
|
| 27 | neldifsnd | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> -. i e. ( N \ { i } ) ) |
|
| 28 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 29 | 3 28 | syl | |- ( ph -> R e. Ring ) |
| 30 | ringmnd | |- ( R e. Ring -> R e. Mnd ) |
|
| 31 | 13 2 | mndidcl | |- ( R e. Mnd -> .0. e. ( Base ` R ) ) |
| 32 | 29 30 31 | 3syl | |- ( ph -> .0. e. ( Base ` R ) ) |
| 33 | 32 | adantr | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> .0. e. ( Base ` R ) ) |
| 34 | eleq1 | |- ( B = .0. -> ( B e. ( Base ` R ) <-> .0. e. ( Base ` R ) ) ) |
|
| 35 | 34 | ad2antll | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( B e. ( Base ` R ) <-> .0. e. ( Base ` R ) ) ) |
| 36 | 33 35 | mpbird | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> B e. ( Base ` R ) ) |
| 37 | 6 | adantlr | |- ( ( ( ph /\ ( i e. N /\ B = .0. ) ) /\ n = i ) -> A = B ) |
| 38 | 14 16 19 22 25 26 27 36 37 | gsumunsnd | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( G gsum ( n e. ( ( N \ { i } ) u. { i } ) |-> A ) ) = ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) B ) ) |
| 39 | oveq2 | |- ( B = .0. -> ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) B ) = ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) .0. ) ) |
|
| 40 | 39 | ad2antll | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) B ) = ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) .0. ) ) |
| 41 | 24 5 | sylan2 | |- ( ( ph /\ n e. ( N \ { i } ) ) -> A e. ( Base ` R ) ) |
| 42 | 41 | ralrimiva | |- ( ph -> A. n e. ( N \ { i } ) A e. ( Base ` R ) ) |
| 43 | 14 18 21 42 | gsummptcl | |- ( ph -> ( G gsum ( n e. ( N \ { i } ) |-> A ) ) e. ( Base ` R ) ) |
| 44 | 43 | adantr | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( G gsum ( n e. ( N \ { i } ) |-> A ) ) e. ( Base ` R ) ) |
| 45 | 13 15 2 | ringrz | |- ( ( R e. Ring /\ ( G gsum ( n e. ( N \ { i } ) |-> A ) ) e. ( Base ` R ) ) -> ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) .0. ) = .0. ) |
| 46 | 29 44 45 | syl2an2r | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) .0. ) = .0. ) |
| 47 | 40 46 | eqtrd | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) B ) = .0. ) |
| 48 | 12 38 47 | 3eqtrd | |- ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( G gsum ( n e. N |-> A ) ) = .0. ) |
| 49 | 7 48 | rexlimddv | |- ( ph -> ( G gsum ( n e. N |-> A ) ) = .0. ) |