This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative law for finitely supported iterated sums. (Contributed by Stefan O'Rear, 2-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumcom3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumcom3.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumcom3.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsumcom3.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumcom3.r | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | ||
| gsumcom3.f | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐵 ) | ||
| gsumcom3.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | ||
| gsumcom3.n | ⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 ) | ||
| Assertion | gsumcom3 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ 𝑋 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumcom3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumcom3.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumcom3.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsumcom3.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | gsumcom3.r | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | |
| 6 | gsumcom3.f | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | gsumcom3.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | |
| 8 | gsumcom3.n | ⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 ) | |
| 9 | 1 2 3 4 5 6 7 8 | gsumcom | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 , 𝑗 ∈ 𝐴 ↦ 𝑋 ) ) ) |
| 10 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) |
| 11 | 1 2 3 4 10 6 7 8 | gsum2d2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) ) ) ) |
| 12 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝐴 ∈ 𝑉 ) |
| 13 | 6 | ancom2s | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) |
| 14 | cnvfi | ⊢ ( 𝑈 ∈ Fin → ◡ 𝑈 ∈ Fin ) | |
| 15 | 7 14 | syl | ⊢ ( 𝜑 → ◡ 𝑈 ∈ Fin ) |
| 16 | ancom | ⊢ ( ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴 ) ↔ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) | |
| 17 | vex | ⊢ 𝑘 ∈ V | |
| 18 | vex | ⊢ 𝑗 ∈ V | |
| 19 | 17 18 | brcnv | ⊢ ( 𝑘 ◡ 𝑈 𝑗 ↔ 𝑗 𝑈 𝑘 ) |
| 20 | 19 | notbii | ⊢ ( ¬ 𝑘 ◡ 𝑈 𝑗 ↔ ¬ 𝑗 𝑈 𝑘 ) |
| 21 | 16 20 | anbi12i | ⊢ ( ( ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴 ) ∧ ¬ 𝑘 ◡ 𝑈 𝑗 ) ↔ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) |
| 22 | 21 8 | sylan2b | ⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴 ) ∧ ¬ 𝑘 ◡ 𝑈 𝑗 ) ) → 𝑋 = 0 ) |
| 23 | 1 2 3 5 12 13 15 22 | gsum2d2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐶 , 𝑗 ∈ 𝐴 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ 𝑋 ) ) ) ) ) |
| 24 | 9 11 23 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ 𝑋 ) ) ) ) ) |