This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative law for finitely supported iterated sums. (Contributed by Stefan O'Rear, 2-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumcom3.b | ||
| gsumcom3.z | |||
| gsumcom3.g | |||
| gsumcom3.a | |||
| gsumcom3.r | |||
| gsumcom3.f | |||
| gsumcom3.u | |||
| gsumcom3.n | |||
| Assertion | gsumcom3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumcom3.b | ||
| 2 | gsumcom3.z | ||
| 3 | gsumcom3.g | ||
| 4 | gsumcom3.a | ||
| 5 | gsumcom3.r | ||
| 6 | gsumcom3.f | ||
| 7 | gsumcom3.u | ||
| 8 | gsumcom3.n | ||
| 9 | 1 2 3 4 5 6 7 8 | gsumcom | |
| 10 | 5 | adantr | |
| 11 | 1 2 3 4 10 6 7 8 | gsum2d2 | |
| 12 | 4 | adantr | |
| 13 | 6 | ancom2s | |
| 14 | cnvfi | ||
| 15 | 7 14 | syl | |
| 16 | ancom | ||
| 17 | vex | ||
| 18 | vex | ||
| 19 | 17 18 | brcnv | |
| 20 | 19 | notbii | |
| 21 | 16 20 | anbi12i | |
| 22 | 21 8 | sylan2b | |
| 23 | 1 2 3 5 12 13 15 22 | gsum2d2 | |
| 24 | 9 11 23 | 3eqtr3d |