This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative law for finite iterated sums. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumcom3fi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumcom3fi.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsumcom3fi.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| gsumcom3fi.r | ⊢ ( 𝜑 → 𝐶 ∈ Fin ) | ||
| gsumcom3fi.f | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐵 ) | ||
| Assertion | gsumcom3fi | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ 𝑋 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumcom3fi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumcom3fi.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 3 | gsumcom3fi.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | gsumcom3fi.r | ⊢ ( 𝜑 → 𝐶 ∈ Fin ) | |
| 5 | gsumcom3fi.f | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐵 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 7 | xpfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ∈ Fin ) → ( 𝐴 × 𝐶 ) ∈ Fin ) | |
| 8 | 3 4 7 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 × 𝐶 ) ∈ Fin ) |
| 9 | brxp | ⊢ ( 𝑗 ( 𝐴 × 𝐶 ) 𝑘 ↔ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) | |
| 10 | 9 | biimpri | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) → 𝑗 ( 𝐴 × 𝐶 ) 𝑘 ) |
| 11 | 10 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑗 ( 𝐴 × 𝐶 ) 𝑘 ) |
| 12 | 11 | pm2.24d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → ( ¬ 𝑗 ( 𝐴 × 𝐶 ) 𝑘 → 𝑋 = ( 0g ‘ 𝐺 ) ) ) |
| 13 | 12 | impr | ⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 ( 𝐴 × 𝐶 ) 𝑘 ) ) → 𝑋 = ( 0g ‘ 𝐺 ) ) |
| 14 | 1 6 2 3 4 5 8 13 | gsumcom3 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ 𝑋 ) ) ) ) ) |