This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative law for finitely supported iterated sums. (Contributed by Stefan O'Rear, 2-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumcom3.b | |- B = ( Base ` G ) |
|
| gsumcom3.z | |- .0. = ( 0g ` G ) |
||
| gsumcom3.g | |- ( ph -> G e. CMnd ) |
||
| gsumcom3.a | |- ( ph -> A e. V ) |
||
| gsumcom3.r | |- ( ph -> C e. W ) |
||
| gsumcom3.f | |- ( ( ph /\ ( j e. A /\ k e. C ) ) -> X e. B ) |
||
| gsumcom3.u | |- ( ph -> U e. Fin ) |
||
| gsumcom3.n | |- ( ( ph /\ ( ( j e. A /\ k e. C ) /\ -. j U k ) ) -> X = .0. ) |
||
| Assertion | gsumcom3 | |- ( ph -> ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> X ) ) ) ) = ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> X ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumcom3.b | |- B = ( Base ` G ) |
|
| 2 | gsumcom3.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsumcom3.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsumcom3.a | |- ( ph -> A e. V ) |
|
| 5 | gsumcom3.r | |- ( ph -> C e. W ) |
|
| 6 | gsumcom3.f | |- ( ( ph /\ ( j e. A /\ k e. C ) ) -> X e. B ) |
|
| 7 | gsumcom3.u | |- ( ph -> U e. Fin ) |
|
| 8 | gsumcom3.n | |- ( ( ph /\ ( ( j e. A /\ k e. C ) /\ -. j U k ) ) -> X = .0. ) |
|
| 9 | 1 2 3 4 5 6 7 8 | gsumcom | |- ( ph -> ( G gsum ( j e. A , k e. C |-> X ) ) = ( G gsum ( k e. C , j e. A |-> X ) ) ) |
| 10 | 5 | adantr | |- ( ( ph /\ j e. A ) -> C e. W ) |
| 11 | 1 2 3 4 10 6 7 8 | gsum2d2 | |- ( ph -> ( G gsum ( j e. A , k e. C |-> X ) ) = ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> X ) ) ) ) ) |
| 12 | 4 | adantr | |- ( ( ph /\ k e. C ) -> A e. V ) |
| 13 | 6 | ancom2s | |- ( ( ph /\ ( k e. C /\ j e. A ) ) -> X e. B ) |
| 14 | cnvfi | |- ( U e. Fin -> `' U e. Fin ) |
|
| 15 | 7 14 | syl | |- ( ph -> `' U e. Fin ) |
| 16 | ancom | |- ( ( k e. C /\ j e. A ) <-> ( j e. A /\ k e. C ) ) |
|
| 17 | vex | |- k e. _V |
|
| 18 | vex | |- j e. _V |
|
| 19 | 17 18 | brcnv | |- ( k `' U j <-> j U k ) |
| 20 | 19 | notbii | |- ( -. k `' U j <-> -. j U k ) |
| 21 | 16 20 | anbi12i | |- ( ( ( k e. C /\ j e. A ) /\ -. k `' U j ) <-> ( ( j e. A /\ k e. C ) /\ -. j U k ) ) |
| 22 | 21 8 | sylan2b | |- ( ( ph /\ ( ( k e. C /\ j e. A ) /\ -. k `' U j ) ) -> X = .0. ) |
| 23 | 1 2 3 5 12 13 15 22 | gsum2d2 | |- ( ph -> ( G gsum ( k e. C , j e. A |-> X ) ) = ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> X ) ) ) ) ) |
| 24 | 9 11 23 | 3eqtr3d | |- ( ph -> ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> X ) ) ) ) = ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> X ) ) ) ) ) |