This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014) Avoid ax-pow . (Revised by BTernaryTau, 9-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvfi | ⊢ ( 𝐴 ∈ Fin → ◡ 𝐴 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq | ⊢ ( 𝑥 = ∅ → ◡ 𝑥 = ◡ ∅ ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑥 = ∅ → ( ◡ 𝑥 ∈ Fin ↔ ◡ ∅ ∈ Fin ) ) |
| 3 | cnveq | ⊢ ( 𝑥 = 𝑦 → ◡ 𝑥 = ◡ 𝑦 ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ◡ 𝑥 ∈ Fin ↔ ◡ 𝑦 ∈ Fin ) ) |
| 5 | cnveq | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ◡ 𝑥 = ◡ ( 𝑦 ∪ { 𝑧 } ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ◡ 𝑥 ∈ Fin ↔ ◡ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) ) |
| 7 | cnveq | ⊢ ( 𝑥 = 𝐴 → ◡ 𝑥 = ◡ 𝐴 ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ◡ 𝑥 ∈ Fin ↔ ◡ 𝐴 ∈ Fin ) ) |
| 9 | cnv0 | ⊢ ◡ ∅ = ∅ | |
| 10 | 0fi | ⊢ ∅ ∈ Fin | |
| 11 | 9 10 | eqeltri | ⊢ ◡ ∅ ∈ Fin |
| 12 | cnvun | ⊢ ◡ ( 𝑦 ∪ { 𝑧 } ) = ( ◡ 𝑦 ∪ ◡ { 𝑧 } ) | |
| 13 | elvv | ⊢ ( 𝑧 ∈ ( V × V ) ↔ ∃ 𝑢 ∃ 𝑣 𝑧 = 〈 𝑢 , 𝑣 〉 ) | |
| 14 | sneq | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → { 𝑧 } = { 〈 𝑢 , 𝑣 〉 } ) | |
| 15 | cnveq | ⊢ ( { 𝑧 } = { 〈 𝑢 , 𝑣 〉 } → ◡ { 𝑧 } = ◡ { 〈 𝑢 , 𝑣 〉 } ) | |
| 16 | vex | ⊢ 𝑢 ∈ V | |
| 17 | vex | ⊢ 𝑣 ∈ V | |
| 18 | 16 17 | cnvsn | ⊢ ◡ { 〈 𝑢 , 𝑣 〉 } = { 〈 𝑣 , 𝑢 〉 } |
| 19 | 15 18 | eqtrdi | ⊢ ( { 𝑧 } = { 〈 𝑢 , 𝑣 〉 } → ◡ { 𝑧 } = { 〈 𝑣 , 𝑢 〉 } ) |
| 20 | 14 19 | syl | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ◡ { 𝑧 } = { 〈 𝑣 , 𝑢 〉 } ) |
| 21 | snfi | ⊢ { 〈 𝑣 , 𝑢 〉 } ∈ Fin | |
| 22 | 20 21 | eqeltrdi | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ◡ { 𝑧 } ∈ Fin ) |
| 23 | 22 | exlimivv | ⊢ ( ∃ 𝑢 ∃ 𝑣 𝑧 = 〈 𝑢 , 𝑣 〉 → ◡ { 𝑧 } ∈ Fin ) |
| 24 | 13 23 | sylbi | ⊢ ( 𝑧 ∈ ( V × V ) → ◡ { 𝑧 } ∈ Fin ) |
| 25 | dfdm4 | ⊢ dom { 𝑧 } = ran ◡ { 𝑧 } | |
| 26 | dmsnn0 | ⊢ ( 𝑧 ∈ ( V × V ) ↔ dom { 𝑧 } ≠ ∅ ) | |
| 27 | 26 | biimpri | ⊢ ( dom { 𝑧 } ≠ ∅ → 𝑧 ∈ ( V × V ) ) |
| 28 | 27 | necon1bi | ⊢ ( ¬ 𝑧 ∈ ( V × V ) → dom { 𝑧 } = ∅ ) |
| 29 | 25 28 | eqtr3id | ⊢ ( ¬ 𝑧 ∈ ( V × V ) → ran ◡ { 𝑧 } = ∅ ) |
| 30 | relcnv | ⊢ Rel ◡ { 𝑧 } | |
| 31 | relrn0 | ⊢ ( Rel ◡ { 𝑧 } → ( ◡ { 𝑧 } = ∅ ↔ ran ◡ { 𝑧 } = ∅ ) ) | |
| 32 | 30 31 | ax-mp | ⊢ ( ◡ { 𝑧 } = ∅ ↔ ran ◡ { 𝑧 } = ∅ ) |
| 33 | 29 32 | sylibr | ⊢ ( ¬ 𝑧 ∈ ( V × V ) → ◡ { 𝑧 } = ∅ ) |
| 34 | 33 10 | eqeltrdi | ⊢ ( ¬ 𝑧 ∈ ( V × V ) → ◡ { 𝑧 } ∈ Fin ) |
| 35 | 24 34 | pm2.61i | ⊢ ◡ { 𝑧 } ∈ Fin |
| 36 | unfi | ⊢ ( ( ◡ 𝑦 ∈ Fin ∧ ◡ { 𝑧 } ∈ Fin ) → ( ◡ 𝑦 ∪ ◡ { 𝑧 } ) ∈ Fin ) | |
| 37 | 35 36 | mpan2 | ⊢ ( ◡ 𝑦 ∈ Fin → ( ◡ 𝑦 ∪ ◡ { 𝑧 } ) ∈ Fin ) |
| 38 | 12 37 | eqeltrid | ⊢ ( ◡ 𝑦 ∈ Fin → ◡ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 39 | 38 | a1i | ⊢ ( 𝑦 ∈ Fin → ( ◡ 𝑦 ∈ Fin → ◡ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) ) |
| 40 | 2 4 6 8 11 39 | findcard2 | ⊢ ( 𝐴 ∈ Fin → ◡ 𝐴 ∈ Fin ) |