This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commute the arguments of a double sum. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumxp.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumxp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumxp.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsumxp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumxp.r | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | ||
| gsumcom.f | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐵 ) | ||
| gsumcom.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | ||
| gsumcom.n | ⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 ) | ||
| Assertion | gsumcom | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 , 𝑗 ∈ 𝐴 ↦ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumxp.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumxp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumxp.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsumxp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | gsumxp.r | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | |
| 6 | gsumcom.f | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | gsumcom.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | |
| 8 | gsumcom.n | ⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 ) | |
| 9 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) |
| 10 | ancom | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ↔ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴 ) ) | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ↔ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴 ) ) ) |
| 12 | 1 2 3 4 9 6 7 8 5 11 | gsumcom2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 , 𝑗 ∈ 𝐴 ↦ 𝑋 ) ) ) |