This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express "the sum of A ( j , k ) over the triangular region M <_ j , M <_ k , j + k <_ N ". (Contributed by NM, 31-Dec-2005) (Proof shortened by Mario Carneiro, 28-Apr-2014) (Revised by Mario Carneiro, 8-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fsum0diag.1 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 𝑗 ) ) ) ) → 𝐴 ∈ ℂ ) | |
| Assertion | fsum0diag | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑁 ) Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 𝑗 ) ) 𝐴 = Σ 𝑘 ∈ ( 0 ... 𝑁 ) Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 𝑘 ) ) 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsum0diag.1 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 𝑗 ) ) ) ) → 𝐴 ∈ ℂ ) | |
| 2 | fzfid | ⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ Fin ) | |
| 3 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 0 ... ( 𝑁 − 𝑗 ) ) ∈ Fin ) | |
| 4 | fsum0diaglem | ⊢ ( ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 𝑗 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 𝑘 ) ) ) ) | |
| 5 | fsum0diaglem | ⊢ ( ( 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 𝑘 ) ) ) → ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 𝑗 ) ) ) ) | |
| 6 | 4 5 | impbii | ⊢ ( ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 𝑗 ) ) ) ↔ ( 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 𝑘 ) ) ) ) |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ( ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 𝑗 ) ) ) ↔ ( 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 𝑘 ) ) ) ) ) |
| 8 | 2 2 3 7 1 | fsumcom2 | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑁 ) Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 𝑗 ) ) 𝐴 = Σ 𝑘 ∈ ( 0 ... 𝑁 ) Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 𝑘 ) ) 𝐴 ) |