This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a finite group sum. This theorem has a weaker hypothesis than gsumcl , because it is not required that F is a function (actually, the hypothesis always holds for any proper class F ). (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumcl.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumcl.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsumcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumcl2.w | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) | ||
| Assertion | gsumcl2 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumcl.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumcl.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsumcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | gsumcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 6 | gsumcl2.w | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) | |
| 7 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 8 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 10 | 1 7 3 5 | cntzcmnf | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐹 ) ) |
| 11 | 1 2 7 9 4 5 10 6 | gsumzcl2 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) |