This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for gsmsymgreq . (Contributed by AV, 26-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsmsymgrfix.s | ⊢ 𝑆 = ( SymGrp ‘ 𝑁 ) | |
| gsmsymgrfix.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| gsmsymgreq.z | ⊢ 𝑍 = ( SymGrp ‘ 𝑀 ) | ||
| gsmsymgreq.p | ⊢ 𝑃 = ( Base ‘ 𝑍 ) | ||
| gsmsymgreq.i | ⊢ 𝐼 = ( 𝑁 ∩ 𝑀 ) | ||
| Assertion | gsmsymgreqlem2 | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsmsymgrfix.s | ⊢ 𝑆 = ( SymGrp ‘ 𝑁 ) | |
| 2 | gsmsymgrfix.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | gsmsymgreq.z | ⊢ 𝑍 = ( SymGrp ‘ 𝑀 ) | |
| 4 | gsmsymgreq.p | ⊢ 𝑃 = ( Base ‘ 𝑍 ) | |
| 5 | gsmsymgreq.i | ⊢ 𝐼 = ( 𝑁 ∩ 𝑀 ) | |
| 6 | ccatws1len | ⊢ ( 𝑋 ∈ Word 𝐵 → ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) = ( ( ♯ ‘ 𝑋 ) + 1 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑋 ∈ Word 𝐵 → ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑋 ) + 1 ) ) ) |
| 8 | lencl | ⊢ ( 𝑋 ∈ Word 𝐵 → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) | |
| 9 | elnn0uz | ⊢ ( ( ♯ ‘ 𝑋 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑋 ) ∈ ( ℤ≥ ‘ 0 ) ) | |
| 10 | 8 9 | sylib | ⊢ ( 𝑋 ∈ Word 𝐵 → ( ♯ ‘ 𝑋 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 11 | fzosplitsn | ⊢ ( ( ♯ ‘ 𝑋 ) ∈ ( ℤ≥ ‘ 0 ) → ( 0 ..^ ( ( ♯ ‘ 𝑋 ) + 1 ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑋 ∈ Word 𝐵 → ( 0 ..^ ( ( ♯ ‘ 𝑋 ) + 1 ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ) |
| 13 | 7 12 | eqtrd | ⊢ ( 𝑋 ∈ Word 𝐵 → ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ) |
| 16 | 15 | raleqdv | ⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 17 | 8 | adantr | ⊢ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
| 19 | fveq2 | ⊢ ( 𝑖 = ( ♯ ‘ 𝑋 ) → ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) = ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ) | |
| 20 | 19 | fveq1d | ⊢ ( 𝑖 = ( ♯ ‘ 𝑋 ) → ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) |
| 21 | fveq2 | ⊢ ( 𝑖 = ( ♯ ‘ 𝑋 ) → ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) = ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ) | |
| 22 | 21 | fveq1d | ⊢ ( 𝑖 = ( ♯ ‘ 𝑋 ) → ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) |
| 23 | 20 22 | eqeq12d | ⊢ ( 𝑖 = ( ♯ ‘ 𝑋 ) → ( ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) ) |
| 24 | 23 | ralbidv | ⊢ ( 𝑖 = ( ♯ ‘ 𝑋 ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) ) |
| 25 | 24 | ralunsn | ⊢ ( ( ♯ ‘ 𝑋 ) ∈ ℕ0 → ( ∀ 𝑖 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) ) ) |
| 26 | 18 25 | syl | ⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) ) ) |
| 27 | simp1l | ⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → 𝑋 ∈ Word 𝐵 ) | |
| 28 | ccats1val1 | ⊢ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) = ( 𝑋 ‘ 𝑖 ) ) | |
| 29 | 27 28 | sylan | ⊢ ( ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) = ( 𝑋 ‘ 𝑖 ) ) |
| 30 | 29 | fveq1d | ⊢ ( ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 31 | simp2l | ⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → 𝑌 ∈ Word 𝑃 ) | |
| 32 | oveq2 | ⊢ ( ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) → ( 0 ..^ ( ♯ ‘ 𝑋 ) ) = ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) | |
| 33 | 32 | eleq2d | ⊢ ( ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) ) |
| 34 | 33 | biimpd | ⊢ ( ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) ) |
| 35 | 34 | 3ad2ant3 | ⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) ) |
| 36 | 35 | imp | ⊢ ( ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) |
| 37 | ccats1val1 | ⊢ ( ( 𝑌 ∈ Word 𝑃 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) → ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ) | |
| 38 | 31 36 37 | syl2an2r | ⊢ ( ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ) |
| 39 | 38 | fveq1d | ⊢ ( ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 40 | 30 39 | eqeq12d | ⊢ ( ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → ( ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 41 | 40 | ralbidv | ⊢ ( ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 42 | 41 | ralbidva | ⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 43 | eqidd | ⊢ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑋 ) ) | |
| 44 | ccats1val2 | ⊢ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑋 ) ) → ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) = 𝐶 ) | |
| 45 | 44 | fveq1d | ⊢ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑋 ) ) → ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) ) |
| 46 | 43 45 | mpd3an3 | ⊢ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) ) |
| 47 | 46 | 3ad2ant1 | ⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) ) |
| 48 | ccats1val2 | ⊢ ( ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) = 𝑅 ) | |
| 49 | 48 | fveq1d | ⊢ ( ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) |
| 50 | 49 | 3expa | ⊢ ( ( ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) |
| 51 | 50 | 3adant1 | ⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) |
| 52 | 47 51 | eqeq12d | ⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ↔ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) ) |
| 53 | 52 | ralbidv | ⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) ) |
| 54 | 42 53 | anbi12d | ⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) ) ) |
| 55 | 16 26 54 | 3bitrd | ⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) ) ) |
| 56 | 55 | ad2antlr | ⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) ) ) |
| 57 | pm3.35 | ⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) | |
| 58 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) ) | |
| 59 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) | |
| 60 | 58 59 | eqeq12d | ⊢ ( 𝑛 = 𝑗 → ( ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ↔ ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ) |
| 61 | 60 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ↔ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) |
| 62 | simp-4l | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) → 𝑁 ∈ Fin ) | |
| 63 | simp-4r | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) → 𝑀 ∈ Fin ) | |
| 64 | simpr | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) → 𝑛 ∈ 𝐼 ) | |
| 65 | 62 63 64 | 3jca | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼 ) ) |
| 66 | 65 | adantr | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼 ) ) |
| 67 | simp-4r | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) | |
| 68 | simplr | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) → ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) | |
| 69 | 68 | anim1i | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ( ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ∧ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) ) |
| 70 | 1 2 3 4 5 | gsmsymgreqlem1 | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼 ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ( ( ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ∧ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) |
| 71 | 70 | imp | ⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼 ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ( ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ∧ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) ) → ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) |
| 72 | 66 67 69 71 | syl21anc | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) |
| 73 | 72 | ex | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) → ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) |
| 74 | 73 | ralimdva | ⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) → ( ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) |
| 75 | 74 | expcom | ⊢ ( ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ( ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
| 76 | 61 75 | sylbi | ⊢ ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ( ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
| 77 | 76 | com23 | ⊢ ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) → ( ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
| 78 | 57 77 | syl | ⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) ) → ( ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
| 79 | 78 | impancom | ⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
| 80 | 79 | com13 | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
| 81 | 80 | imp | ⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) |
| 82 | 56 81 | sylbid | ⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) |
| 83 | 82 | ex | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |