This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the symbol concatenated with a word. (Contributed by Alexander van der Vekens, 5-Aug-2018) (Proof shortened by Alexander van der Vekens, 14-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccats1val2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ++ 〈“ 𝑆 ”〉 ) ‘ 𝐼 ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 2 | s1cl | ⊢ ( 𝑆 ∈ 𝑉 → 〈“ 𝑆 ”〉 ∈ Word 𝑉 ) | |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → 〈“ 𝑆 ”〉 ∈ Word 𝑉 ) |
| 4 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 5 | 4 | nn0zd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 6 | elfzomin | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( ♯ ‘ 𝑊 ) ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
| 8 | s1len | ⊢ ( ♯ ‘ 〈“ 𝑆 ”〉 ) = 1 | |
| 9 | 8 | oveq2i | ⊢ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) |
| 10 | 9 | oveq2i | ⊢ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) = ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
| 11 | 7 10 | eleqtrrdi | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) |
| 13 | eleq1 | ⊢ ( 𝐼 = ( ♯ ‘ 𝑊 ) → ( 𝐼 ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ↔ ( ♯ ‘ 𝑊 ) ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( 𝐼 ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ↔ ( ♯ ‘ 𝑊 ) ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) ) |
| 15 | 12 14 | mpbird | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) |
| 16 | 15 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) |
| 17 | ccatval2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 〈“ 𝑆 ”〉 ∈ Word 𝑉 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) → ( ( 𝑊 ++ 〈“ 𝑆 ”〉 ) ‘ 𝐼 ) = ( 〈“ 𝑆 ”〉 ‘ ( 𝐼 − ( ♯ ‘ 𝑊 ) ) ) ) | |
| 18 | 1 3 16 17 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ++ 〈“ 𝑆 ”〉 ) ‘ 𝐼 ) = ( 〈“ 𝑆 ”〉 ‘ ( 𝐼 − ( ♯ ‘ 𝑊 ) ) ) ) |
| 19 | oveq1 | ⊢ ( 𝐼 = ( ♯ ‘ 𝑊 ) → ( 𝐼 − ( ♯ ‘ 𝑊 ) ) = ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑊 ) ) ) | |
| 20 | 19 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( 𝐼 − ( ♯ ‘ 𝑊 ) ) = ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑊 ) ) ) |
| 21 | 4 | nn0cnd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 22 | 21 | subidd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑊 ) ) = 0 ) |
| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑊 ) ) = 0 ) |
| 24 | 20 23 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( 𝐼 − ( ♯ ‘ 𝑊 ) ) = 0 ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( 〈“ 𝑆 ”〉 ‘ ( 𝐼 − ( ♯ ‘ 𝑊 ) ) ) = ( 〈“ 𝑆 ”〉 ‘ 0 ) ) |
| 26 | s1fv | ⊢ ( 𝑆 ∈ 𝑉 → ( 〈“ 𝑆 ”〉 ‘ 0 ) = 𝑆 ) | |
| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( 〈“ 𝑆 ”〉 ‘ 0 ) = 𝑆 ) |
| 28 | 18 25 27 | 3eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ++ 〈“ 𝑆 ”〉 ) ‘ 𝐼 ) = 𝑆 ) |