This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpkerinj.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpkerinj.2 | ⊢ 𝑊 = ( GId ‘ 𝐺 ) | ||
| grpkerinj.3 | ⊢ 𝑌 = ran 𝐻 | ||
| grpkerinj.4 | ⊢ 𝑈 = ( GId ‘ 𝐻 ) | ||
| Assertion | grpokerinj | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( 𝐹 : 𝑋 –1-1→ 𝑌 ↔ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpkerinj.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpkerinj.2 | ⊢ 𝑊 = ( GId ‘ 𝐺 ) | |
| 3 | grpkerinj.3 | ⊢ 𝑌 = ran 𝐻 | |
| 4 | grpkerinj.4 | ⊢ 𝑈 = ( GId ‘ 𝐻 ) | |
| 5 | 2 4 | ghomidOLD | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( 𝐹 ‘ 𝑊 ) = 𝑈 ) |
| 6 | 5 | sneqd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → { ( 𝐹 ‘ 𝑊 ) } = { 𝑈 } ) |
| 7 | 1 3 | ghomf | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 8 | 7 | ffnd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → 𝐹 Fn 𝑋 ) |
| 9 | 1 2 | grpoidcl | ⊢ ( 𝐺 ∈ GrpOp → 𝑊 ∈ 𝑋 ) |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → 𝑊 ∈ 𝑋 ) |
| 11 | fnsnfv | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑊 ∈ 𝑋 ) → { ( 𝐹 ‘ 𝑊 ) } = ( 𝐹 “ { 𝑊 } ) ) | |
| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → { ( 𝐹 ‘ 𝑊 ) } = ( 𝐹 “ { 𝑊 } ) ) |
| 13 | 6 12 | eqtr3d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → { 𝑈 } = ( 𝐹 “ { 𝑊 } ) ) |
| 14 | 13 | imaeq2d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( ◡ 𝐹 “ { 𝑈 } ) = ( ◡ 𝐹 “ ( 𝐹 “ { 𝑊 } ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ) → ( ◡ 𝐹 “ { 𝑈 } ) = ( ◡ 𝐹 “ ( 𝐹 “ { 𝑊 } ) ) ) |
| 16 | 9 | snssd | ⊢ ( 𝐺 ∈ GrpOp → { 𝑊 } ⊆ 𝑋 ) |
| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → { 𝑊 } ⊆ 𝑋 ) |
| 18 | f1imacnv | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ { 𝑊 } ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ { 𝑊 } ) ) = { 𝑊 } ) | |
| 19 | 17 18 | sylan2 | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ) → ( ◡ 𝐹 “ ( 𝐹 “ { 𝑊 } ) ) = { 𝑊 } ) |
| 20 | 15 19 | eqtrd | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ) → ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) |
| 21 | 20 | expcom | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( 𝐹 : 𝑋 –1-1→ 𝑌 → ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ) |
| 22 | 7 | adantr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 23 | simpl2 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐻 ∈ GrpOp ) | |
| 24 | 7 | ffvelcdmda | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) |
| 25 | 24 | adantrr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) |
| 26 | 7 | ffvelcdmda | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) |
| 27 | 26 | adantrl | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) |
| 28 | eqid | ⊢ ( /𝑔 ‘ 𝐻 ) = ( /𝑔 ‘ 𝐻 ) | |
| 29 | 3 4 28 | grpoeqdivid | ⊢ ( ( 𝐻 ∈ GrpOp ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ( /𝑔 ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) = 𝑈 ) ) |
| 30 | 23 25 27 29 | syl3anc | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ( /𝑔 ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) = 𝑈 ) ) |
| 31 | 30 | adantlr | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ( /𝑔 ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) = 𝑈 ) ) |
| 32 | eqid | ⊢ ( /𝑔 ‘ 𝐺 ) = ( /𝑔 ‘ 𝐺 ) | |
| 33 | 1 32 28 | ghomdiv | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( /𝑔 ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 34 | 33 | adantlr | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( /𝑔 ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 35 | 34 | eqeq1d | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) = 𝑈 ↔ ( ( 𝐹 ‘ 𝑥 ) ( /𝑔 ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) = 𝑈 ) ) |
| 36 | 4 | fvexi | ⊢ 𝑈 ∈ V |
| 37 | 36 | snid | ⊢ 𝑈 ∈ { 𝑈 } |
| 38 | eleq1 | ⊢ ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) = 𝑈 → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) ∈ { 𝑈 } ↔ 𝑈 ∈ { 𝑈 } ) ) | |
| 39 | 37 38 | mpbiri | ⊢ ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) = 𝑈 → ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) ∈ { 𝑈 } ) |
| 40 | 7 | ffund | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → Fun 𝐹 ) |
| 41 | 40 | adantr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → Fun 𝐹 ) |
| 42 | 1 32 | grpodivcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 43 | 42 | 3expb | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 44 | 43 | 3ad2antl1 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 45 | 7 | fdmd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → dom 𝐹 = 𝑋 ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → dom 𝐹 = 𝑋 ) |
| 47 | 44 46 | eleqtrrd | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ dom 𝐹 ) |
| 48 | fvimacnv | ⊢ ( ( Fun 𝐹 ∧ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ dom 𝐹 ) → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) ∈ { 𝑈 } ↔ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ ( ◡ 𝐹 “ { 𝑈 } ) ) ) | |
| 49 | 41 47 48 | syl2anc | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) ∈ { 𝑈 } ↔ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ ( ◡ 𝐹 “ { 𝑈 } ) ) ) |
| 50 | eleq2 | ⊢ ( ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } → ( ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ ( ◡ 𝐹 “ { 𝑈 } ) ↔ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ { 𝑊 } ) ) | |
| 51 | 49 50 | sylan9bb | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) ∈ { 𝑈 } ↔ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ { 𝑊 } ) ) |
| 52 | 51 | an32s | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) ∈ { 𝑈 } ↔ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ { 𝑊 } ) ) |
| 53 | elsni | ⊢ ( ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ { 𝑊 } → ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) = 𝑊 ) | |
| 54 | 1 2 32 | grpoeqdivid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 = 𝑦 ↔ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) = 𝑊 ) ) |
| 55 | 54 | biimprd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) = 𝑊 → 𝑥 = 𝑦 ) ) |
| 56 | 55 | 3expb | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) = 𝑊 → 𝑥 = 𝑦 ) ) |
| 57 | 56 | 3ad2antl1 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) = 𝑊 → 𝑥 = 𝑦 ) ) |
| 58 | 53 57 | syl5 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ { 𝑊 } → 𝑥 = 𝑦 ) ) |
| 59 | 58 | adantlr | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ { 𝑊 } → 𝑥 = 𝑦 ) ) |
| 60 | 52 59 | sylbid | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) ∈ { 𝑈 } → 𝑥 = 𝑦 ) ) |
| 61 | 39 60 | syl5 | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) = 𝑈 → 𝑥 = 𝑦 ) ) |
| 62 | 35 61 | sylbird | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( /𝑔 ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) = 𝑈 → 𝑥 = 𝑦 ) ) |
| 63 | 31 62 | sylbid | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 64 | 63 | ralrimivva | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 65 | dff13 | ⊢ ( 𝐹 : 𝑋 –1-1→ 𝑌 ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 66 | 22 64 65 | sylanbrc | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
| 67 | 66 | ex | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } → 𝐹 : 𝑋 –1-1→ 𝑌 ) ) |
| 68 | 21 67 | impbid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( 𝐹 : 𝑋 –1-1→ 𝑌 ↔ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ) |