This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpeqdivid.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpeqdivid.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | ||
| grpeqdivid.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | ||
| Assertion | grpoeqdivid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 𝐷 𝐵 ) = 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpeqdivid.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpeqdivid.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | |
| 3 | grpeqdivid.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | |
| 4 | 1 3 2 | grpodivid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐵 ) = 𝑈 ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐵 ) = 𝑈 ) |
| 6 | oveq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 𝐷 𝐵 ) = ( 𝐵 𝐷 𝐵 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 𝐷 𝐵 ) = 𝑈 ↔ ( 𝐵 𝐷 𝐵 ) = 𝑈 ) ) |
| 8 | 5 7 | syl5ibrcom | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 = 𝐵 → ( 𝐴 𝐷 𝐵 ) = 𝑈 ) ) |
| 9 | oveq1 | ⊢ ( ( 𝐴 𝐷 𝐵 ) = 𝑈 → ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = ( 𝑈 𝐺 𝐵 ) ) | |
| 10 | 1 3 | grponpcan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = 𝐴 ) |
| 11 | 1 2 | grpolid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 𝐺 𝐵 ) = 𝐵 ) |
| 12 | 11 | 3adant2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 𝐺 𝐵 ) = 𝐵 ) |
| 13 | 10 12 | eqeq12d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = ( 𝑈 𝐺 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 14 | 9 13 | imbitrid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) = 𝑈 → 𝐴 = 𝐵 ) ) |
| 15 | 8 14 | impbid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 𝐷 𝐵 ) = 𝑈 ) ) |