This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group homomorphisms preserve division. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghomdiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| ghomdiv.2 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | ||
| ghomdiv.3 | ⊢ 𝐶 = ( /𝑔 ‘ 𝐻 ) | ||
| Assertion | ghomdiv | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) 𝐶 ( 𝐹 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghomdiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | ghomdiv.2 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | |
| 3 | ghomdiv.3 | ⊢ 𝐶 = ( /𝑔 ‘ 𝐻 ) | |
| 4 | simpl2 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐻 ∈ GrpOp ) | |
| 5 | eqid | ⊢ ran 𝐻 = ran 𝐻 | |
| 6 | 1 5 | ghomf | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → 𝐹 : 𝑋 ⟶ ran 𝐻 ) |
| 7 | 6 | ffvelcdmda | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐻 ) |
| 8 | 7 | adantrr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐻 ) |
| 9 | 6 | ffvelcdmda | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐵 ) ∈ ran 𝐻 ) |
| 10 | 9 | adantrl | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ran 𝐻 ) |
| 11 | 5 3 | grponpcan | ⊢ ( ( 𝐻 ∈ GrpOp ∧ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐻 ∧ ( 𝐹 ‘ 𝐵 ) ∈ ran 𝐻 ) → ( ( ( 𝐹 ‘ 𝐴 ) 𝐶 ( 𝐹 ‘ 𝐵 ) ) 𝐻 ( 𝐹 ‘ 𝐵 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 12 | 4 8 10 11 | syl3anc | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) 𝐶 ( 𝐹 ‘ 𝐵 ) ) 𝐻 ( 𝐹 ‘ 𝐵 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 13 | 1 2 | grponpcan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = 𝐴 ) |
| 14 | 13 | 3expb | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = 𝐴 ) |
| 15 | 14 | 3ad2antl1 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = 𝐴 ) |
| 16 | 15 | fveq2d | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 17 | 1 2 | grpodivcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 ) |
| 18 | 17 | 3expb | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 ) |
| 19 | simprr | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 20 | 18 19 | jca | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
| 21 | 20 | 3ad2antl1 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
| 22 | 1 | ghomlinOLD | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝐴 𝐷 𝐵 ) ) 𝐻 ( 𝐹 ‘ 𝐵 ) ) = ( 𝐹 ‘ ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) ) ) |
| 23 | 22 | eqcomd | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) ) = ( ( 𝐹 ‘ ( 𝐴 𝐷 𝐵 ) ) 𝐻 ( 𝐹 ‘ 𝐵 ) ) ) |
| 24 | 21 23 | syldan | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) ) = ( ( 𝐹 ‘ ( 𝐴 𝐷 𝐵 ) ) 𝐻 ( 𝐹 ‘ 𝐵 ) ) ) |
| 25 | 12 16 24 | 3eqtr2rd | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝐴 𝐷 𝐵 ) ) 𝐻 ( 𝐹 ‘ 𝐵 ) ) = ( ( ( 𝐹 ‘ 𝐴 ) 𝐶 ( 𝐹 ‘ 𝐵 ) ) 𝐻 ( 𝐹 ‘ 𝐵 ) ) ) |
| 26 | 18 | 3ad2antl1 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 ) |
| 27 | 6 | ffvelcdmda | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 𝐷 𝐵 ) ) ∈ ran 𝐻 ) |
| 28 | 26 27 | syldan | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝐴 𝐷 𝐵 ) ) ∈ ran 𝐻 ) |
| 29 | 5 3 | grpodivcl | ⊢ ( ( 𝐻 ∈ GrpOp ∧ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐻 ∧ ( 𝐹 ‘ 𝐵 ) ∈ ran 𝐻 ) → ( ( 𝐹 ‘ 𝐴 ) 𝐶 ( 𝐹 ‘ 𝐵 ) ) ∈ ran 𝐻 ) |
| 30 | 4 8 10 29 | syl3anc | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝐶 ( 𝐹 ‘ 𝐵 ) ) ∈ ran 𝐻 ) |
| 31 | 5 | grporcan | ⊢ ( ( 𝐻 ∈ GrpOp ∧ ( ( 𝐹 ‘ ( 𝐴 𝐷 𝐵 ) ) ∈ ran 𝐻 ∧ ( ( 𝐹 ‘ 𝐴 ) 𝐶 ( 𝐹 ‘ 𝐵 ) ) ∈ ran 𝐻 ∧ ( 𝐹 ‘ 𝐵 ) ∈ ran 𝐻 ) ) → ( ( ( 𝐹 ‘ ( 𝐴 𝐷 𝐵 ) ) 𝐻 ( 𝐹 ‘ 𝐵 ) ) = ( ( ( 𝐹 ‘ 𝐴 ) 𝐶 ( 𝐹 ‘ 𝐵 ) ) 𝐻 ( 𝐹 ‘ 𝐵 ) ) ↔ ( 𝐹 ‘ ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) 𝐶 ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 32 | 4 28 30 10 31 | syl13anc | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ ( 𝐴 𝐷 𝐵 ) ) 𝐻 ( 𝐹 ‘ 𝐵 ) ) = ( ( ( 𝐹 ‘ 𝐴 ) 𝐶 ( 𝐹 ‘ 𝐵 ) ) 𝐻 ( 𝐹 ‘ 𝐵 ) ) ↔ ( 𝐹 ‘ ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) 𝐶 ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 33 | 25 32 | mpbid | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) 𝐶 ( 𝐹 ‘ 𝐵 ) ) ) |