This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpkerinj.1 | |- X = ran G |
|
| grpkerinj.2 | |- W = ( GId ` G ) |
||
| grpkerinj.3 | |- Y = ran H |
||
| grpkerinj.4 | |- U = ( GId ` H ) |
||
| Assertion | grpokerinj | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F : X -1-1-> Y <-> ( `' F " { U } ) = { W } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpkerinj.1 | |- X = ran G |
|
| 2 | grpkerinj.2 | |- W = ( GId ` G ) |
|
| 3 | grpkerinj.3 | |- Y = ran H |
|
| 4 | grpkerinj.4 | |- U = ( GId ` H ) |
|
| 5 | 2 4 | ghomidOLD | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F ` W ) = U ) |
| 6 | 5 | sneqd | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> { ( F ` W ) } = { U } ) |
| 7 | 1 3 | ghomf | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> F : X --> Y ) |
| 8 | 7 | ffnd | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> F Fn X ) |
| 9 | 1 2 | grpoidcl | |- ( G e. GrpOp -> W e. X ) |
| 10 | 9 | 3ad2ant1 | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> W e. X ) |
| 11 | fnsnfv | |- ( ( F Fn X /\ W e. X ) -> { ( F ` W ) } = ( F " { W } ) ) |
|
| 12 | 8 10 11 | syl2anc | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> { ( F ` W ) } = ( F " { W } ) ) |
| 13 | 6 12 | eqtr3d | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> { U } = ( F " { W } ) ) |
| 14 | 13 | imaeq2d | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( `' F " { U } ) = ( `' F " ( F " { W } ) ) ) |
| 15 | 14 | adantl | |- ( ( F : X -1-1-> Y /\ ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) ) -> ( `' F " { U } ) = ( `' F " ( F " { W } ) ) ) |
| 16 | 9 | snssd | |- ( G e. GrpOp -> { W } C_ X ) |
| 17 | 16 | 3ad2ant1 | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> { W } C_ X ) |
| 18 | f1imacnv | |- ( ( F : X -1-1-> Y /\ { W } C_ X ) -> ( `' F " ( F " { W } ) ) = { W } ) |
|
| 19 | 17 18 | sylan2 | |- ( ( F : X -1-1-> Y /\ ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) ) -> ( `' F " ( F " { W } ) ) = { W } ) |
| 20 | 15 19 | eqtrd | |- ( ( F : X -1-1-> Y /\ ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) ) -> ( `' F " { U } ) = { W } ) |
| 21 | 20 | expcom | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F : X -1-1-> Y -> ( `' F " { U } ) = { W } ) ) |
| 22 | 7 | adantr | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) -> F : X --> Y ) |
| 23 | simpl2 | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> H e. GrpOp ) |
|
| 24 | 7 | ffvelcdmda | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ x e. X ) -> ( F ` x ) e. Y ) |
| 25 | 24 | adantrr | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( F ` x ) e. Y ) |
| 26 | 7 | ffvelcdmda | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ y e. X ) -> ( F ` y ) e. Y ) |
| 27 | 26 | adantrl | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( F ` y ) e. Y ) |
| 28 | eqid | |- ( /g ` H ) = ( /g ` H ) |
|
| 29 | 3 4 28 | grpoeqdivid | |- ( ( H e. GrpOp /\ ( F ` x ) e. Y /\ ( F ` y ) e. Y ) -> ( ( F ` x ) = ( F ` y ) <-> ( ( F ` x ) ( /g ` H ) ( F ` y ) ) = U ) ) |
| 30 | 23 25 27 29 | syl3anc | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` x ) = ( F ` y ) <-> ( ( F ` x ) ( /g ` H ) ( F ` y ) ) = U ) ) |
| 31 | 30 | adantlr | |- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` x ) = ( F ` y ) <-> ( ( F ` x ) ( /g ` H ) ( F ` y ) ) = U ) ) |
| 32 | eqid | |- ( /g ` G ) = ( /g ` G ) |
|
| 33 | 1 32 28 | ghomdiv | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x ( /g ` G ) y ) ) = ( ( F ` x ) ( /g ` H ) ( F ` y ) ) ) |
| 34 | 33 | adantlr | |- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x ( /g ` G ) y ) ) = ( ( F ` x ) ( /g ` H ) ( F ` y ) ) ) |
| 35 | 34 | eqeq1d | |- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` ( x ( /g ` G ) y ) ) = U <-> ( ( F ` x ) ( /g ` H ) ( F ` y ) ) = U ) ) |
| 36 | 4 | fvexi | |- U e. _V |
| 37 | 36 | snid | |- U e. { U } |
| 38 | eleq1 | |- ( ( F ` ( x ( /g ` G ) y ) ) = U -> ( ( F ` ( x ( /g ` G ) y ) ) e. { U } <-> U e. { U } ) ) |
|
| 39 | 37 38 | mpbiri | |- ( ( F ` ( x ( /g ` G ) y ) ) = U -> ( F ` ( x ( /g ` G ) y ) ) e. { U } ) |
| 40 | 7 | ffund | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> Fun F ) |
| 41 | 40 | adantr | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> Fun F ) |
| 42 | 1 32 | grpodivcl | |- ( ( G e. GrpOp /\ x e. X /\ y e. X ) -> ( x ( /g ` G ) y ) e. X ) |
| 43 | 42 | 3expb | |- ( ( G e. GrpOp /\ ( x e. X /\ y e. X ) ) -> ( x ( /g ` G ) y ) e. X ) |
| 44 | 43 | 3ad2antl1 | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( x ( /g ` G ) y ) e. X ) |
| 45 | 7 | fdmd | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> dom F = X ) |
| 46 | 45 | adantr | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> dom F = X ) |
| 47 | 44 46 | eleqtrrd | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( x ( /g ` G ) y ) e. dom F ) |
| 48 | fvimacnv | |- ( ( Fun F /\ ( x ( /g ` G ) y ) e. dom F ) -> ( ( F ` ( x ( /g ` G ) y ) ) e. { U } <-> ( x ( /g ` G ) y ) e. ( `' F " { U } ) ) ) |
|
| 49 | 41 47 48 | syl2anc | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` ( x ( /g ` G ) y ) ) e. { U } <-> ( x ( /g ` G ) y ) e. ( `' F " { U } ) ) ) |
| 50 | eleq2 | |- ( ( `' F " { U } ) = { W } -> ( ( x ( /g ` G ) y ) e. ( `' F " { U } ) <-> ( x ( /g ` G ) y ) e. { W } ) ) |
|
| 51 | 49 50 | sylan9bb | |- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) /\ ( `' F " { U } ) = { W } ) -> ( ( F ` ( x ( /g ` G ) y ) ) e. { U } <-> ( x ( /g ` G ) y ) e. { W } ) ) |
| 52 | 51 | an32s | |- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` ( x ( /g ` G ) y ) ) e. { U } <-> ( x ( /g ` G ) y ) e. { W } ) ) |
| 53 | elsni | |- ( ( x ( /g ` G ) y ) e. { W } -> ( x ( /g ` G ) y ) = W ) |
|
| 54 | 1 2 32 | grpoeqdivid | |- ( ( G e. GrpOp /\ x e. X /\ y e. X ) -> ( x = y <-> ( x ( /g ` G ) y ) = W ) ) |
| 55 | 54 | biimprd | |- ( ( G e. GrpOp /\ x e. X /\ y e. X ) -> ( ( x ( /g ` G ) y ) = W -> x = y ) ) |
| 56 | 55 | 3expb | |- ( ( G e. GrpOp /\ ( x e. X /\ y e. X ) ) -> ( ( x ( /g ` G ) y ) = W -> x = y ) ) |
| 57 | 56 | 3ad2antl1 | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( x ( /g ` G ) y ) = W -> x = y ) ) |
| 58 | 53 57 | syl5 | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( x ( /g ` G ) y ) e. { W } -> x = y ) ) |
| 59 | 58 | adantlr | |- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( x ( /g ` G ) y ) e. { W } -> x = y ) ) |
| 60 | 52 59 | sylbid | |- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` ( x ( /g ` G ) y ) ) e. { U } -> x = y ) ) |
| 61 | 39 60 | syl5 | |- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` ( x ( /g ` G ) y ) ) = U -> x = y ) ) |
| 62 | 35 61 | sylbird | |- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( ( F ` x ) ( /g ` H ) ( F ` y ) ) = U -> x = y ) ) |
| 63 | 31 62 | sylbid | |- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 64 | 63 | ralrimivva | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) -> A. x e. X A. y e. X ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 65 | dff13 | |- ( F : X -1-1-> Y <-> ( F : X --> Y /\ A. x e. X A. y e. X ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
|
| 66 | 22 64 65 | sylanbrc | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) -> F : X -1-1-> Y ) |
| 67 | 66 | ex | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( ( `' F " { U } ) = { W } -> F : X -1-1-> Y ) ) |
| 68 | 21 67 | impbid | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F : X -1-1-> Y <-> ( `' F " { U } ) = { W } ) ) |