This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of Herstein p. 55. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpasscan1.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpasscan1.2 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | ||
| Assertion | grpoinvop | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpasscan1.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpasscan1.2 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | |
| 3 | simp1 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐺 ∈ GrpOp ) | |
| 4 | simp2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 5 | simp3 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) | |
| 6 | 1 2 | grpoinvcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ) |
| 7 | 6 | 3adant2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ) |
| 8 | 1 2 | grpoinvcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |
| 10 | 1 | grpocl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ) |
| 11 | 3 7 9 10 | syl3anc | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ) |
| 12 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) = ( 𝐴 𝐺 ( 𝐵 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) ) |
| 13 | 3 4 5 11 12 | syl13anc | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) = ( 𝐴 𝐺 ( 𝐵 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) ) |
| 14 | eqid | ⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) | |
| 15 | 1 14 2 | grporinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 ( 𝑁 ‘ 𝐵 ) ) = ( GId ‘ 𝐺 ) ) |
| 16 | 15 | 3adant2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 ( 𝑁 ‘ 𝐵 ) ) = ( GId ‘ 𝐺 ) ) |
| 17 | 16 | oveq1d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐵 𝐺 ( 𝑁 ‘ 𝐵 ) ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
| 18 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) ) → ( ( 𝐵 𝐺 ( 𝑁 ‘ 𝐵 ) ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝐵 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) |
| 19 | 3 5 7 9 18 | syl13anc | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐵 𝐺 ( 𝑁 ‘ 𝐵 ) ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝐵 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) |
| 20 | 1 14 | grpolid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| 21 | 8 20 | syldan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| 22 | 21 | 3adant3 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| 23 | 17 19 22 | 3eqtr3d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| 24 | 23 | oveq2d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝐵 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
| 25 | 1 14 2 | grporinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
| 26 | 25 | 3adant3 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
| 27 | 13 24 26 | 3eqtrd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) = ( GId ‘ 𝐺 ) ) |
| 28 | 1 | grpocl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 29 | 1 14 2 | grpoinvid1 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ↔ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) = ( GId ‘ 𝐺 ) ) ) |
| 30 | 3 28 11 29 | syl3anc | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ↔ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) = ( GId ‘ 𝐺 ) ) ) |
| 31 | 27 30 | mpbird | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |