This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpdiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpdiv.2 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | ||
| grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | ||
| Assertion | grpodivfval | ⊢ ( 𝐺 ∈ GrpOp → 𝐷 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpdiv.2 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | |
| 3 | grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | |
| 4 | rnexg | ⊢ ( 𝐺 ∈ GrpOp → ran 𝐺 ∈ V ) | |
| 5 | 1 4 | eqeltrid | ⊢ ( 𝐺 ∈ GrpOp → 𝑋 ∈ V ) |
| 6 | mpoexga | ⊢ ( ( 𝑋 ∈ V ∧ 𝑋 ∈ V ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ∈ V ) | |
| 7 | 5 5 6 | syl2anc | ⊢ ( 𝐺 ∈ GrpOp → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ∈ V ) |
| 8 | rneq | ⊢ ( 𝑔 = 𝐺 → ran 𝑔 = ran 𝐺 ) | |
| 9 | 8 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ran 𝑔 = 𝑋 ) |
| 10 | id | ⊢ ( 𝑔 = 𝐺 → 𝑔 = 𝐺 ) | |
| 11 | eqidd | ⊢ ( 𝑔 = 𝐺 → 𝑥 = 𝑥 ) | |
| 12 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( inv ‘ 𝑔 ) = ( inv ‘ 𝐺 ) ) | |
| 13 | 12 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( inv ‘ 𝑔 ) = 𝑁 ) |
| 14 | 13 | fveq1d | ⊢ ( 𝑔 = 𝐺 → ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) |
| 15 | 10 11 14 | oveq123d | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) = ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) |
| 16 | 9 9 15 | mpoeq123dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 17 | df-gdiv | ⊢ /𝑔 = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) ) | |
| 18 | 16 17 | fvmptg | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ∈ V ) → ( /𝑔 ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 19 | 7 18 | mpdan | ⊢ ( 𝐺 ∈ GrpOp → ( /𝑔 ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 20 | 3 19 | eqtrid | ⊢ ( 𝐺 ∈ GrpOp → 𝐷 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) |