This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of Herstein p. 55. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpasscan1.1 | |- X = ran G |
|
| grpasscan1.2 | |- N = ( inv ` G ) |
||
| Assertion | grpoinvop | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A G B ) ) = ( ( N ` B ) G ( N ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpasscan1.1 | |- X = ran G |
|
| 2 | grpasscan1.2 | |- N = ( inv ` G ) |
|
| 3 | simp1 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> G e. GrpOp ) |
|
| 4 | simp2 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> A e. X ) |
|
| 5 | simp3 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> B e. X ) |
|
| 6 | 1 2 | grpoinvcl | |- ( ( G e. GrpOp /\ B e. X ) -> ( N ` B ) e. X ) |
| 7 | 6 | 3adant2 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` B ) e. X ) |
| 8 | 1 2 | grpoinvcl | |- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) |
| 9 | 8 | 3adant3 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` A ) e. X ) |
| 10 | 1 | grpocl | |- ( ( G e. GrpOp /\ ( N ` B ) e. X /\ ( N ` A ) e. X ) -> ( ( N ` B ) G ( N ` A ) ) e. X ) |
| 11 | 3 7 9 10 | syl3anc | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` B ) G ( N ` A ) ) e. X ) |
| 12 | 1 | grpoass | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ ( ( N ` B ) G ( N ` A ) ) e. X ) ) -> ( ( A G B ) G ( ( N ` B ) G ( N ` A ) ) ) = ( A G ( B G ( ( N ` B ) G ( N ` A ) ) ) ) ) |
| 13 | 3 4 5 11 12 | syl13anc | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A G B ) G ( ( N ` B ) G ( N ` A ) ) ) = ( A G ( B G ( ( N ` B ) G ( N ` A ) ) ) ) ) |
| 14 | eqid | |- ( GId ` G ) = ( GId ` G ) |
|
| 15 | 1 14 2 | grporinv | |- ( ( G e. GrpOp /\ B e. X ) -> ( B G ( N ` B ) ) = ( GId ` G ) ) |
| 16 | 15 | 3adant2 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B G ( N ` B ) ) = ( GId ` G ) ) |
| 17 | 16 | oveq1d | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( B G ( N ` B ) ) G ( N ` A ) ) = ( ( GId ` G ) G ( N ` A ) ) ) |
| 18 | 1 | grpoass | |- ( ( G e. GrpOp /\ ( B e. X /\ ( N ` B ) e. X /\ ( N ` A ) e. X ) ) -> ( ( B G ( N ` B ) ) G ( N ` A ) ) = ( B G ( ( N ` B ) G ( N ` A ) ) ) ) |
| 19 | 3 5 7 9 18 | syl13anc | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( B G ( N ` B ) ) G ( N ` A ) ) = ( B G ( ( N ` B ) G ( N ` A ) ) ) ) |
| 20 | 1 14 | grpolid | |- ( ( G e. GrpOp /\ ( N ` A ) e. X ) -> ( ( GId ` G ) G ( N ` A ) ) = ( N ` A ) ) |
| 21 | 8 20 | syldan | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( GId ` G ) G ( N ` A ) ) = ( N ` A ) ) |
| 22 | 21 | 3adant3 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( GId ` G ) G ( N ` A ) ) = ( N ` A ) ) |
| 23 | 17 19 22 | 3eqtr3d | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B G ( ( N ` B ) G ( N ` A ) ) ) = ( N ` A ) ) |
| 24 | 23 | oveq2d | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( B G ( ( N ` B ) G ( N ` A ) ) ) ) = ( A G ( N ` A ) ) ) |
| 25 | 1 14 2 | grporinv | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( N ` A ) ) = ( GId ` G ) ) |
| 26 | 25 | 3adant3 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( N ` A ) ) = ( GId ` G ) ) |
| 27 | 13 24 26 | 3eqtrd | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A G B ) G ( ( N ` B ) G ( N ` A ) ) ) = ( GId ` G ) ) |
| 28 | 1 | grpocl | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
| 29 | 1 14 2 | grpoinvid1 | |- ( ( G e. GrpOp /\ ( A G B ) e. X /\ ( ( N ` B ) G ( N ` A ) ) e. X ) -> ( ( N ` ( A G B ) ) = ( ( N ` B ) G ( N ` A ) ) <-> ( ( A G B ) G ( ( N ` B ) G ( N ` A ) ) ) = ( GId ` G ) ) ) |
| 30 | 3 28 11 29 | syl3anc | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` ( A G B ) ) = ( ( N ` B ) G ( N ` A ) ) <-> ( ( A G B ) G ( ( N ` B ) G ( N ` A ) ) ) = ( GId ` G ) ) ) |
| 31 | 27 30 | mpbird | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A G B ) ) = ( ( N ` B ) G ( N ` A ) ) ) |