This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinv.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpinv.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | ||
| grpinv.3 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | ||
| Assertion | grpoinvid1 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = 𝐵 ↔ ( 𝐴 𝐺 𝐵 ) = 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpinv.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | |
| 3 | grpinv.3 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | |
| 4 | oveq2 | ⊢ ( ( 𝑁 ‘ 𝐴 ) = 𝐵 → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝐴 𝐺 𝐵 ) ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑁 ‘ 𝐴 ) = 𝐵 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝐴 𝐺 𝐵 ) ) |
| 6 | 1 2 3 | grporinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑁 ‘ 𝐴 ) = 𝐵 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) |
| 9 | 5 8 | eqtr3d | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑁 ‘ 𝐴 ) = 𝐵 ) → ( 𝐴 𝐺 𝐵 ) = 𝑈 ) |
| 10 | oveq2 | ⊢ ( ( 𝐴 𝐺 𝐵 ) = 𝑈 → ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝑈 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐺 𝐵 ) = 𝑈 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝑈 ) ) |
| 12 | 1 2 3 | grpolinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ) |
| 13 | 12 | oveq1d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) 𝐺 𝐵 ) = ( 𝑈 𝐺 𝐵 ) ) |
| 14 | 13 | 3adant3 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) 𝐺 𝐵 ) = ( 𝑈 𝐺 𝐵 ) ) |
| 15 | 1 3 | grpoinvcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |
| 16 | 15 | adantrr | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |
| 17 | simprl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 18 | simprr | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 19 | 16 17 18 | 3jca | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
| 20 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) 𝐺 𝐵 ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) ) |
| 21 | 19 20 | syldan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) 𝐺 𝐵 ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) ) |
| 22 | 21 | 3impb | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) 𝐺 𝐵 ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) ) |
| 23 | 14 22 | eqtr3d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 𝐺 𝐵 ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) ) |
| 24 | 1 2 | grpolid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 𝐺 𝐵 ) = 𝐵 ) |
| 25 | 24 | 3adant2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 𝐺 𝐵 ) = 𝐵 ) |
| 26 | 23 25 | eqtr3d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) = 𝐵 ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐺 𝐵 ) = 𝑈 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) = 𝐵 ) |
| 28 | 1 2 | grporid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝑈 ) = ( 𝑁 ‘ 𝐴 ) ) |
| 29 | 15 28 | syldan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝑈 ) = ( 𝑁 ‘ 𝐴 ) ) |
| 30 | 29 | 3adant3 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝑈 ) = ( 𝑁 ‘ 𝐴 ) ) |
| 31 | 30 | adantr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐺 𝐵 ) = 𝑈 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝑈 ) = ( 𝑁 ‘ 𝐴 ) ) |
| 32 | 11 27 31 | 3eqtr3rd | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐺 𝐵 ) = 𝑈 ) → ( 𝑁 ‘ 𝐴 ) = 𝐵 ) |
| 33 | 9 32 | impbida | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = 𝐵 ↔ ( 𝐴 𝐺 𝐵 ) = 𝑈 ) ) |