This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inverse of a group division. (Contributed by NM, 24-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpdiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpdiv.2 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | ||
| grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | ||
| Assertion | grpoinvdiv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐷 𝐵 ) ) = ( 𝐵 𝐷 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpdiv.2 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | |
| 3 | grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | |
| 4 | 1 2 3 | grpodivval | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) |
| 5 | 4 | fveq2d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐷 𝐵 ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) ) |
| 6 | 1 2 | grpoinvcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ) |
| 7 | 6 | 3adant2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ) |
| 8 | 1 2 | grpoinvop | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) = ( ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
| 9 | 7 8 | syld3an3 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) = ( ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
| 10 | 1 2 | grpo2inv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) = 𝐵 ) |
| 11 | 10 | 3adant2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) = 𝐵 ) |
| 12 | 11 | oveq1d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝐵 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
| 13 | 1 2 3 | grpodivval | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐵 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
| 14 | 13 | 3com23 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐵 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
| 15 | 12 14 | eqtr4d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝐵 𝐷 𝐴 ) ) |
| 16 | 5 9 15 | 3eqtrd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐷 𝐵 ) ) = ( 𝐵 𝐷 𝐴 ) ) |