This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double inverse law for groups. Lemma 2.2.1(c) of Herstein p. 55. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpasscan1.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpasscan1.2 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | ||
| Assertion | grpo2inv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpasscan1.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpasscan1.2 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | |
| 3 | 1 2 | grpoinvcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |
| 4 | eqid | ⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) | |
| 5 | 1 4 2 | grporinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ) = ( GId ‘ 𝐺 ) ) |
| 6 | 3 5 | syldan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ) = ( GId ‘ 𝐺 ) ) |
| 7 | 1 4 2 | grpolinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) |
| 8 | 6 7 | eqtr4d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) ) |
| 9 | 1 2 | grpoinvcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ) |
| 10 | 3 9 | syldan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ) |
| 11 | simpr | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 12 | 10 11 3 | 3jca | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) ) |
| 13 | 1 | grpolcan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) ↔ ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) = 𝐴 ) ) |
| 14 | 12 13 | syldan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) ↔ ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) = 𝐴 ) ) |
| 15 | 8 14 | mpbid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) = 𝐴 ) |