This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpdiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpdiv.2 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | ||
| grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | ||
| Assertion | grpodivval | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpdiv.2 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | |
| 3 | grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | |
| 4 | 1 2 3 | grpodivfval | ⊢ ( 𝐺 ∈ GrpOp → 𝐷 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 5 | 4 | oveqd | ⊢ ( 𝐺 ∈ GrpOp → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) 𝐵 ) ) |
| 6 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) | |
| 7 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ 𝐵 ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 ( 𝑁 ‘ 𝑦 ) ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) |
| 9 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) | |
| 10 | ovex | ⊢ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ∈ V | |
| 11 | 6 8 9 10 | ovmpo | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) 𝐵 ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) |
| 12 | 5 11 | sylan9eq | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) |
| 13 | 12 | 3impb | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) |