This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping for group division. (Contributed by NM, 10-Apr-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpdivf.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | ||
| Assertion | grpodivf | ⊢ ( 𝐺 ∈ GrpOp → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdivf.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) | |
| 4 | 1 3 | grpoinvcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
| 6 | 1 | grpocl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) → ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝑋 ) |
| 7 | 5 6 | syld3an3 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝑋 ) |
| 8 | 7 | 3expib | ⊢ ( 𝐺 ∈ GrpOp → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝑋 ) ) |
| 9 | 8 | ralrimivv | ⊢ ( 𝐺 ∈ GrpOp → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝑋 ) |
| 10 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) | |
| 11 | 10 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝑋 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 12 | 9 11 | sylib | ⊢ ( 𝐺 ∈ GrpOp → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 13 | 1 3 2 | grpodivfval | ⊢ ( 𝐺 ∈ GrpOp → 𝐷 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 14 | 13 | feq1d | ⊢ ( 𝐺 ∈ GrpOp → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |
| 15 | 12 14 | mpbird | ⊢ ( 𝐺 ∈ GrpOp → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |