This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inverse of a group division. (Contributed by NM, 24-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpdiv.1 | |- X = ran G |
|
| grpdiv.2 | |- N = ( inv ` G ) |
||
| grpdiv.3 | |- D = ( /g ` G ) |
||
| Assertion | grpoinvdiv | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A D B ) ) = ( B D A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdiv.1 | |- X = ran G |
|
| 2 | grpdiv.2 | |- N = ( inv ` G ) |
|
| 3 | grpdiv.3 | |- D = ( /g ` G ) |
|
| 4 | 1 2 3 | grpodivval | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( N ` B ) ) ) |
| 5 | 4 | fveq2d | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A D B ) ) = ( N ` ( A G ( N ` B ) ) ) ) |
| 6 | 1 2 | grpoinvcl | |- ( ( G e. GrpOp /\ B e. X ) -> ( N ` B ) e. X ) |
| 7 | 6 | 3adant2 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` B ) e. X ) |
| 8 | 1 2 | grpoinvop | |- ( ( G e. GrpOp /\ A e. X /\ ( N ` B ) e. X ) -> ( N ` ( A G ( N ` B ) ) ) = ( ( N ` ( N ` B ) ) G ( N ` A ) ) ) |
| 9 | 7 8 | syld3an3 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A G ( N ` B ) ) ) = ( ( N ` ( N ` B ) ) G ( N ` A ) ) ) |
| 10 | 1 2 | grpo2inv | |- ( ( G e. GrpOp /\ B e. X ) -> ( N ` ( N ` B ) ) = B ) |
| 11 | 10 | 3adant2 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( N ` B ) ) = B ) |
| 12 | 11 | oveq1d | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` ( N ` B ) ) G ( N ` A ) ) = ( B G ( N ` A ) ) ) |
| 13 | 1 2 3 | grpodivval | |- ( ( G e. GrpOp /\ B e. X /\ A e. X ) -> ( B D A ) = ( B G ( N ` A ) ) ) |
| 14 | 13 | 3com23 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B D A ) = ( B G ( N ` A ) ) ) |
| 15 | 12 14 | eqtr4d | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` ( N ` B ) ) G ( N ` A ) ) = ( B D A ) ) |
| 16 | 5 9 15 | 3eqtrd | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A D B ) ) = ( B D A ) ) |