This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The properties of a group element's inverse. (Contributed by NM, 27-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinv.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpinv.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | ||
| grpinv.3 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | ||
| Assertion | grpoinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpinv.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | |
| 3 | grpinv.3 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | |
| 4 | 1 2 3 | grpoinvval | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 5 | 1 2 | grpoinveu | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
| 6 | riotacl2 | ⊢ ( ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 → ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ∈ { 𝑦 ∈ 𝑋 ∣ ( 𝑦 𝐺 𝐴 ) = 𝑈 } ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ∈ { 𝑦 ∈ 𝑋 ∣ ( 𝑦 𝐺 𝐴 ) = 𝑈 } ) |
| 8 | 4 7 | eqeltrd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ { 𝑦 ∈ 𝑋 ∣ ( 𝑦 𝐺 𝐴 ) = 𝑈 } ) |
| 9 | simpl | ⊢ ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ( 𝑦 𝐺 𝐴 ) = 𝑈 ) | |
| 10 | 9 | rgenw | ⊢ ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
| 11 | 10 | a1i | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 12 | 1 2 | grpoidinv2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
| 13 | 12 | simprd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) |
| 14 | 11 13 5 | 3jca | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ∧ ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 15 | reupick2 | ⊢ ( ( ( ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ∧ ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ↔ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) | |
| 16 | 14 15 | sylan | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ↔ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
| 17 | 16 | rabbidva | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → { 𝑦 ∈ 𝑋 ∣ ( 𝑦 𝐺 𝐴 ) = 𝑈 } = { 𝑦 ∈ 𝑋 ∣ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) } ) |
| 18 | 8 17 | eleqtrd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ { 𝑦 ∈ 𝑋 ∣ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) } ) |
| 19 | oveq1 | ⊢ ( 𝑦 = ( 𝑁 ‘ 𝐴 ) → ( 𝑦 𝐺 𝐴 ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) ) | |
| 20 | 19 | eqeq1d | ⊢ ( 𝑦 = ( 𝑁 ‘ 𝐴 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ↔ ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ) ) |
| 21 | oveq2 | ⊢ ( 𝑦 = ( 𝑁 ‘ 𝐴 ) → ( 𝐴 𝐺 𝑦 ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) | |
| 22 | 21 | eqeq1d | ⊢ ( 𝑦 = ( 𝑁 ‘ 𝐴 ) → ( ( 𝐴 𝐺 𝑦 ) = 𝑈 ↔ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) ) |
| 23 | 20 22 | anbi12d | ⊢ ( 𝑦 = ( 𝑁 ‘ 𝐴 ) → ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ↔ ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) ) ) |
| 24 | 23 | elrab | ⊢ ( ( 𝑁 ‘ 𝐴 ) ∈ { 𝑦 ∈ 𝑋 ∣ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) } ↔ ( ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ∧ ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) ) ) |
| 25 | 18 24 | sylib | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ∧ ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) ) ) |
| 26 | 25 | simprd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) ) |