This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of a group element. (Contributed by NM, 26-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvfval.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpinvfval.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | ||
| grpinvfval.3 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | ||
| Assertion | grpoinvval | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvfval.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpinvfval.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | |
| 3 | grpinvfval.3 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | |
| 4 | 1 2 3 | grpoinvfval | ⊢ ( 𝐺 ∈ GrpOp → 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ) |
| 5 | 4 | fveq1d | ⊢ ( 𝐺 ∈ GrpOp → ( 𝑁 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ‘ 𝐴 ) ) |
| 6 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 𝐺 𝑥 ) = ( 𝑦 𝐺 𝐴 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 8 | 7 | riotabidv | ⊢ ( 𝑥 = 𝐴 → ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) = ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 9 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) | |
| 10 | riotaex | ⊢ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ∈ V | |
| 11 | 8 9 10 | fvmpt | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ‘ 𝐴 ) = ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 12 | 5 11 | sylan9eq | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |