This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013) (Proof shortened by Mario Carneiro, 19-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reupick2 | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancr | ⊢ ( ( 𝜓 → 𝜑 ) → ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) | |
| 2 | 1 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) |
| 3 | rexim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) ) |
| 5 | reupick3 | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝜑 → 𝜓 ) ) | |
| 6 | 5 | 3exp | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) ) |
| 7 | 6 | com12 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) ) |
| 8 | 4 7 | syl6 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) ) ) |
| 9 | 8 | 3imp1 | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝜑 → 𝜓 ) ) |
| 10 | rsp | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜑 ) ) ) | |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜑 ) ) ) |
| 12 | 11 | imp | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜑 ) ) |
| 13 | 9 12 | impbid | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) |