This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The properties of a group element's inverse. (Contributed by NM, 27-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinv.1 | |- X = ran G |
|
| grpinv.2 | |- U = ( GId ` G ) |
||
| grpinv.3 | |- N = ( inv ` G ) |
||
| Assertion | grpoinv | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.1 | |- X = ran G |
|
| 2 | grpinv.2 | |- U = ( GId ` G ) |
|
| 3 | grpinv.3 | |- N = ( inv ` G ) |
|
| 4 | 1 2 3 | grpoinvval | |- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) = ( iota_ y e. X ( y G A ) = U ) ) |
| 5 | 1 2 | grpoinveu | |- ( ( G e. GrpOp /\ A e. X ) -> E! y e. X ( y G A ) = U ) |
| 6 | riotacl2 | |- ( E! y e. X ( y G A ) = U -> ( iota_ y e. X ( y G A ) = U ) e. { y e. X | ( y G A ) = U } ) |
|
| 7 | 5 6 | syl | |- ( ( G e. GrpOp /\ A e. X ) -> ( iota_ y e. X ( y G A ) = U ) e. { y e. X | ( y G A ) = U } ) |
| 8 | 4 7 | eqeltrd | |- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. { y e. X | ( y G A ) = U } ) |
| 9 | simpl | |- ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) |
|
| 10 | 9 | rgenw | |- A. y e. X ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) |
| 11 | 10 | a1i | |- ( ( G e. GrpOp /\ A e. X ) -> A. y e. X ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) ) |
| 12 | 1 2 | grpoidinv2 | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |
| 13 | 12 | simprd | |- ( ( G e. GrpOp /\ A e. X ) -> E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) |
| 14 | 11 13 5 | 3jca | |- ( ( G e. GrpOp /\ A e. X ) -> ( A. y e. X ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) /\ E! y e. X ( y G A ) = U ) ) |
| 15 | reupick2 | |- ( ( ( A. y e. X ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) /\ E! y e. X ( y G A ) = U ) /\ y e. X ) -> ( ( y G A ) = U <-> ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |
|
| 16 | 14 15 | sylan | |- ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> ( ( y G A ) = U <-> ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |
| 17 | 16 | rabbidva | |- ( ( G e. GrpOp /\ A e. X ) -> { y e. X | ( y G A ) = U } = { y e. X | ( ( y G A ) = U /\ ( A G y ) = U ) } ) |
| 18 | 8 17 | eleqtrd | |- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. { y e. X | ( ( y G A ) = U /\ ( A G y ) = U ) } ) |
| 19 | oveq1 | |- ( y = ( N ` A ) -> ( y G A ) = ( ( N ` A ) G A ) ) |
|
| 20 | 19 | eqeq1d | |- ( y = ( N ` A ) -> ( ( y G A ) = U <-> ( ( N ` A ) G A ) = U ) ) |
| 21 | oveq2 | |- ( y = ( N ` A ) -> ( A G y ) = ( A G ( N ` A ) ) ) |
|
| 22 | 21 | eqeq1d | |- ( y = ( N ` A ) -> ( ( A G y ) = U <-> ( A G ( N ` A ) ) = U ) ) |
| 23 | 20 22 | anbi12d | |- ( y = ( N ` A ) -> ( ( ( y G A ) = U /\ ( A G y ) = U ) <-> ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) ) ) |
| 24 | 23 | elrab | |- ( ( N ` A ) e. { y e. X | ( ( y G A ) = U /\ ( A G y ) = U ) } <-> ( ( N ` A ) e. X /\ ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) ) ) |
| 25 | 18 24 | sylib | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) e. X /\ ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) ) ) |
| 26 | 25 | simprd | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) ) |