This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpoidval.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpoidval.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | ||
| Assertion | grpoidinv2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpoidval.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpoidval.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | |
| 3 | 1 2 | grpoidval | ⊢ ( 𝐺 ∈ GrpOp → 𝑈 = ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
| 4 | 1 | grpoideu | ⊢ ( 𝐺 ∈ GrpOp → ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
| 5 | riotacl2 | ⊢ ( ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 → ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∈ { 𝑢 ∈ 𝑋 ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 } ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐺 ∈ GrpOp → ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∈ { 𝑢 ∈ 𝑋 ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 } ) |
| 7 | 3 6 | eqeltrd | ⊢ ( 𝐺 ∈ GrpOp → 𝑈 ∈ { 𝑢 ∈ 𝑋 ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 } ) |
| 8 | simpll | ⊢ ( ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) | |
| 9 | 8 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
| 10 | 9 | rgenw | ⊢ ∀ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
| 11 | 10 | a1i | ⊢ ( 𝐺 ∈ GrpOp → ∀ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
| 12 | 1 | grpoidinv | ⊢ ( 𝐺 ∈ GrpOp → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ) |
| 13 | 11 12 4 | 3jca | ⊢ ( 𝐺 ∈ GrpOp → ( ∀ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ∧ ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
| 14 | reupick2 | ⊢ ( ( ( ∀ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ∧ ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∧ 𝑢 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ) ) | |
| 15 | 13 14 | sylan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ) ) |
| 16 | 15 | rabbidva | ⊢ ( 𝐺 ∈ GrpOp → { 𝑢 ∈ 𝑋 ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 } = { 𝑢 ∈ 𝑋 ∣ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) } ) |
| 17 | 7 16 | eleqtrd | ⊢ ( 𝐺 ∈ GrpOp → 𝑈 ∈ { 𝑢 ∈ 𝑋 ∣ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) } ) |
| 18 | oveq1 | ⊢ ( 𝑢 = 𝑈 → ( 𝑢 𝐺 𝑥 ) = ( 𝑈 𝐺 𝑥 ) ) | |
| 19 | 18 | eqeq1d | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 𝑥 ) = 𝑥 ) ) |
| 20 | oveq2 | ⊢ ( 𝑢 = 𝑈 → ( 𝑥 𝐺 𝑢 ) = ( 𝑥 𝐺 𝑈 ) ) | |
| 21 | 20 | eqeq1d | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑥 𝐺 𝑢 ) = 𝑥 ↔ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) |
| 22 | 19 21 | anbi12d | ⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ↔ ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) ) |
| 23 | eqeq2 | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ↔ ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) | |
| 24 | eqeq2 | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑥 𝐺 𝑦 ) = 𝑢 ↔ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) | |
| 25 | 23 24 | anbi12d | ⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ↔ ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ) |
| 26 | 25 | rexbidv | ⊢ ( 𝑢 = 𝑈 → ( ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ) |
| 27 | 22 26 | anbi12d | ⊢ ( 𝑢 = 𝑈 → ( ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ↔ ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ) ) |
| 28 | 27 | ralbidv | ⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ) ) |
| 29 | 28 | elrab | ⊢ ( 𝑈 ∈ { 𝑢 ∈ 𝑋 ∣ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) } ↔ ( 𝑈 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ) ) |
| 30 | 17 29 | sylib | ⊢ ( 𝐺 ∈ GrpOp → ( 𝑈 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ) ) |
| 31 | 30 | simprd | ⊢ ( 𝐺 ∈ GrpOp → ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ) |
| 32 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑈 𝐺 𝑥 ) = ( 𝑈 𝐺 𝐴 ) ) | |
| 33 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 34 | 32 33 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 𝐴 ) = 𝐴 ) ) |
| 35 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 𝑈 ) = ( 𝐴 𝐺 𝑈 ) ) | |
| 36 | 35 33 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐺 𝑈 ) = 𝑥 ↔ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ) |
| 37 | 34 36 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ↔ ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ) ) |
| 38 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 𝐺 𝑥 ) = ( 𝑦 𝐺 𝐴 ) ) | |
| 39 | 38 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 40 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 𝑦 ) = ( 𝐴 𝐺 𝑦 ) ) | |
| 41 | 40 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐺 𝑦 ) = 𝑈 ↔ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) |
| 42 | 39 41 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ↔ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
| 43 | 42 | rexbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
| 44 | 37 43 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ↔ ( ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) ) |
| 45 | 44 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
| 46 | 31 45 | sylan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |