This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left identity element of a group is unique. Lemma 2.2.1(a) of Herstein p. 55. (Contributed by NM, 14-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | grpoideu | ⊢ ( 𝐺 ∈ GrpOp → ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | 1 | grpoidinv | ⊢ ( 𝐺 ∈ GrpOp → ∃ 𝑢 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) |
| 3 | simpll | ⊢ ( ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ( 𝑢 𝐺 𝑧 ) = 𝑧 ) | |
| 4 | 3 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ) |
| 5 | oveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑢 𝐺 𝑧 ) = ( 𝑢 𝐺 𝑥 ) ) | |
| 6 | id | ⊢ ( 𝑧 = 𝑥 → 𝑧 = 𝑥 ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ↔ ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
| 8 | 7 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
| 9 | 4 8 | sylib | ⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
| 11 | 9 | ad2antlr | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
| 12 | simpr | ⊢ ( ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) | |
| 13 | 12 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑧 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) |
| 14 | oveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑦 𝐺 𝑧 ) = ( 𝑦 𝐺 𝑤 ) ) | |
| 15 | 14 | eqeq1d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ↔ ( 𝑦 𝐺 𝑤 ) = 𝑢 ) ) |
| 16 | oveq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 𝐺 𝑦 ) = ( 𝑤 𝐺 𝑦 ) ) | |
| 17 | 16 | eqeq1d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑧 𝐺 𝑦 ) = 𝑢 ↔ ( 𝑤 𝐺 𝑦 ) = 𝑢 ) ) |
| 18 | 15 17 | anbi12d | ⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ↔ ( ( 𝑦 𝐺 𝑤 ) = 𝑢 ∧ ( 𝑤 𝐺 𝑦 ) = 𝑢 ) ) ) |
| 19 | 18 | rexbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑤 ) = 𝑢 ∧ ( 𝑤 𝐺 𝑦 ) = 𝑢 ) ) ) |
| 20 | 19 | rspcva | ⊢ ( ( 𝑤 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑤 ) = 𝑢 ∧ ( 𝑤 𝐺 𝑦 ) = 𝑢 ) ) |
| 21 | 20 | adantll | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑤 ) = 𝑢 ∧ ( 𝑤 𝐺 𝑦 ) = 𝑢 ) ) |
| 22 | 13 21 | sylan2 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑤 ) = 𝑢 ∧ ( 𝑤 𝐺 𝑦 ) = 𝑢 ) ) |
| 23 | 1 | grpoidinvlem4 | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑤 ) = 𝑢 ∧ ( 𝑤 𝐺 𝑦 ) = 𝑢 ) ) → ( 𝑤 𝐺 𝑢 ) = ( 𝑢 𝐺 𝑤 ) ) |
| 24 | 22 23 | syldan | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) → ( 𝑤 𝐺 𝑢 ) = ( 𝑢 𝐺 𝑤 ) ) |
| 25 | 24 | an32s | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 𝐺 𝑢 ) = ( 𝑢 𝐺 𝑤 ) ) |
| 26 | 25 | adantllr | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 𝐺 𝑢 ) = ( 𝑢 𝐺 𝑤 ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) ) → ( 𝑤 𝐺 𝑢 ) = ( 𝑢 𝐺 𝑤 ) ) |
| 28 | oveq2 | ⊢ ( 𝑥 = 𝑢 → ( 𝑤 𝐺 𝑥 ) = ( 𝑤 𝐺 𝑢 ) ) | |
| 29 | id | ⊢ ( 𝑥 = 𝑢 → 𝑥 = 𝑢 ) | |
| 30 | 28 29 | eqeq12d | ⊢ ( 𝑥 = 𝑢 → ( ( 𝑤 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑤 𝐺 𝑢 ) = 𝑢 ) ) |
| 31 | 30 | rspcva | ⊢ ( ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) → ( 𝑤 𝐺 𝑢 ) = 𝑢 ) |
| 32 | 31 | adantll | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) → ( 𝑤 𝐺 𝑢 ) = 𝑢 ) |
| 33 | 32 | ad2ant2rl | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) ) → ( 𝑤 𝐺 𝑢 ) = 𝑢 ) |
| 34 | 33 | adantllr | ⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) ) → ( 𝑤 𝐺 𝑢 ) = 𝑢 ) |
| 35 | oveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑢 𝐺 𝑥 ) = ( 𝑢 𝐺 𝑤 ) ) | |
| 36 | id | ⊢ ( 𝑥 = 𝑤 → 𝑥 = 𝑤 ) | |
| 37 | 35 36 | eqeq12d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑢 𝐺 𝑤 ) = 𝑤 ) ) |
| 38 | 37 | rspcva | ⊢ ( ( 𝑤 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) → ( 𝑢 𝐺 𝑤 ) = 𝑤 ) |
| 39 | 38 | ad2ant2lr | ⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) ) → ( 𝑢 𝐺 𝑤 ) = 𝑤 ) |
| 40 | 27 34 39 | 3eqtr3d | ⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) ) → 𝑢 = 𝑤 ) |
| 41 | 40 | ex | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) → 𝑢 = 𝑤 ) ) |
| 42 | 11 41 | mpand | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 → 𝑢 = 𝑤 ) ) |
| 43 | 42 | ralrimiva | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) → ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 → 𝑢 = 𝑤 ) ) |
| 44 | 10 43 | jca | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 → 𝑢 = 𝑤 ) ) ) |
| 45 | 44 | ex | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) → ( ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 → 𝑢 = 𝑤 ) ) ) ) |
| 46 | 45 | reximdva | ⊢ ( 𝐺 ∈ GrpOp → ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ∃ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 → 𝑢 = 𝑤 ) ) ) ) |
| 47 | 2 46 | mpd | ⊢ ( 𝐺 ∈ GrpOp → ∃ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 → 𝑢 = 𝑤 ) ) ) |
| 48 | oveq1 | ⊢ ( 𝑢 = 𝑤 → ( 𝑢 𝐺 𝑥 ) = ( 𝑤 𝐺 𝑥 ) ) | |
| 49 | 48 | eqeq1d | ⊢ ( 𝑢 = 𝑤 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑤 𝐺 𝑥 ) = 𝑥 ) ) |
| 50 | 49 | ralbidv | ⊢ ( 𝑢 = 𝑤 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) ) |
| 51 | 50 | reu8 | ⊢ ( ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ∃ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 → 𝑢 = 𝑤 ) ) ) |
| 52 | 47 51 | sylibr | ⊢ ( 𝐺 ∈ GrpOp → ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |