This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rmo4.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | reu8 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmo4.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | cbvreuvw | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑦 ∈ 𝐴 𝜓 ) |
| 3 | reu6 | ⊢ ( ∃! 𝑦 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 ↔ 𝑦 = 𝑥 ) ) | |
| 4 | dfbi2 | ⊢ ( ( 𝜓 ↔ 𝑦 = 𝑥 ) ↔ ( ( 𝜓 → 𝑦 = 𝑥 ) ∧ ( 𝑦 = 𝑥 → 𝜓 ) ) ) | |
| 5 | 4 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 ↔ 𝑦 = 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 → 𝑦 = 𝑥 ) ∧ ( 𝑦 = 𝑥 → 𝜓 ) ) ) |
| 6 | r19.26 | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 → 𝑦 = 𝑥 ) ∧ ( 𝑦 = 𝑥 → 𝜓 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑦 = 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑥 → 𝜓 ) ) ) | |
| 7 | ancom | ⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ∧ 𝜑 ) ) | |
| 8 | equcom | ⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) | |
| 9 | 8 | imbi2i | ⊢ ( ( 𝜓 → 𝑥 = 𝑦 ) ↔ ( 𝜓 → 𝑦 = 𝑥 ) ) |
| 10 | 9 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑦 = 𝑥 ) ) |
| 11 | 10 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑦 = 𝑥 ) ) ) |
| 12 | biimt | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) | |
| 13 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑥 → 𝜓 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑦 = 𝑥 → 𝜓 ) ) ) | |
| 14 | bi2.04 | ⊢ ( ( 𝑦 ∈ 𝐴 → ( 𝑦 = 𝑥 → 𝜓 ) ) ↔ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 → 𝜓 ) ) ) | |
| 15 | 14 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑦 = 𝑥 → 𝜓 ) ) ↔ ∀ 𝑦 ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 → 𝜓 ) ) ) |
| 16 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 17 | 16 1 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 → 𝜓 ) ) ) |
| 18 | 17 | bicomd | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑦 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| 19 | 18 | equcoms | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| 20 | 19 | equsalvw | ⊢ ( ∀ 𝑦 ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 → 𝜓 ) ) ↔ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 21 | 13 15 20 | 3bitrri | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑥 → 𝜓 ) ) |
| 22 | 12 21 | bitrdi | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑥 → 𝜓 ) ) ) |
| 23 | 11 22 | anbi12d | ⊢ ( 𝑥 ∈ 𝐴 → ( ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ∧ 𝜑 ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑦 = 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑥 → 𝜓 ) ) ) ) |
| 24 | 7 23 | bitrid | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑦 = 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 = 𝑥 → 𝜓 ) ) ) ) |
| 25 | 6 24 | bitr4id | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 → 𝑦 = 𝑥 ) ∧ ( 𝑦 = 𝑥 → 𝜓 ) ) ↔ ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) ) |
| 26 | 5 25 | bitrid | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 ↔ 𝑦 = 𝑥 ) ↔ ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) ) |
| 27 | 26 | rexbiia | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 ↔ 𝑦 = 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 28 | 2 3 27 | 3bitri | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |