This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left identity element of a group is unique. Lemma 2.2.1(a) of Herstein p. 55. (Contributed by NM, 14-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpfo.1 | |- X = ran G |
|
| Assertion | grpoideu | |- ( G e. GrpOp -> E! u e. X A. x e. X ( u G x ) = x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | |- X = ran G |
|
| 2 | 1 | grpoidinv | |- ( G e. GrpOp -> E. u e. X A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) ) |
| 3 | simpll | |- ( ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) -> ( u G z ) = z ) |
|
| 4 | 3 | ralimi | |- ( A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) -> A. z e. X ( u G z ) = z ) |
| 5 | oveq2 | |- ( z = x -> ( u G z ) = ( u G x ) ) |
|
| 6 | id | |- ( z = x -> z = x ) |
|
| 7 | 5 6 | eqeq12d | |- ( z = x -> ( ( u G z ) = z <-> ( u G x ) = x ) ) |
| 8 | 7 | cbvralvw | |- ( A. z e. X ( u G z ) = z <-> A. x e. X ( u G x ) = x ) |
| 9 | 4 8 | sylib | |- ( A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) -> A. x e. X ( u G x ) = x ) |
| 10 | 9 | adantl | |- ( ( ( G e. GrpOp /\ u e. X ) /\ A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) ) -> A. x e. X ( u G x ) = x ) |
| 11 | 9 | ad2antlr | |- ( ( ( ( G e. GrpOp /\ u e. X ) /\ A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) ) /\ w e. X ) -> A. x e. X ( u G x ) = x ) |
| 12 | simpr | |- ( ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) -> E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) |
|
| 13 | 12 | ralimi | |- ( A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) -> A. z e. X E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) |
| 14 | oveq2 | |- ( z = w -> ( y G z ) = ( y G w ) ) |
|
| 15 | 14 | eqeq1d | |- ( z = w -> ( ( y G z ) = u <-> ( y G w ) = u ) ) |
| 16 | oveq1 | |- ( z = w -> ( z G y ) = ( w G y ) ) |
|
| 17 | 16 | eqeq1d | |- ( z = w -> ( ( z G y ) = u <-> ( w G y ) = u ) ) |
| 18 | 15 17 | anbi12d | |- ( z = w -> ( ( ( y G z ) = u /\ ( z G y ) = u ) <-> ( ( y G w ) = u /\ ( w G y ) = u ) ) ) |
| 19 | 18 | rexbidv | |- ( z = w -> ( E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) <-> E. y e. X ( ( y G w ) = u /\ ( w G y ) = u ) ) ) |
| 20 | 19 | rspcva | |- ( ( w e. X /\ A. z e. X E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) -> E. y e. X ( ( y G w ) = u /\ ( w G y ) = u ) ) |
| 21 | 20 | adantll | |- ( ( ( G e. GrpOp /\ w e. X ) /\ A. z e. X E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) -> E. y e. X ( ( y G w ) = u /\ ( w G y ) = u ) ) |
| 22 | 13 21 | sylan2 | |- ( ( ( G e. GrpOp /\ w e. X ) /\ A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) ) -> E. y e. X ( ( y G w ) = u /\ ( w G y ) = u ) ) |
| 23 | 1 | grpoidinvlem4 | |- ( ( ( G e. GrpOp /\ w e. X ) /\ E. y e. X ( ( y G w ) = u /\ ( w G y ) = u ) ) -> ( w G u ) = ( u G w ) ) |
| 24 | 22 23 | syldan | |- ( ( ( G e. GrpOp /\ w e. X ) /\ A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) ) -> ( w G u ) = ( u G w ) ) |
| 25 | 24 | an32s | |- ( ( ( G e. GrpOp /\ A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) ) /\ w e. X ) -> ( w G u ) = ( u G w ) ) |
| 26 | 25 | adantllr | |- ( ( ( ( G e. GrpOp /\ u e. X ) /\ A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) ) /\ w e. X ) -> ( w G u ) = ( u G w ) ) |
| 27 | 26 | adantr | |- ( ( ( ( ( G e. GrpOp /\ u e. X ) /\ A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) ) /\ w e. X ) /\ ( A. x e. X ( u G x ) = x /\ A. x e. X ( w G x ) = x ) ) -> ( w G u ) = ( u G w ) ) |
| 28 | oveq2 | |- ( x = u -> ( w G x ) = ( w G u ) ) |
|
| 29 | id | |- ( x = u -> x = u ) |
|
| 30 | 28 29 | eqeq12d | |- ( x = u -> ( ( w G x ) = x <-> ( w G u ) = u ) ) |
| 31 | 30 | rspcva | |- ( ( u e. X /\ A. x e. X ( w G x ) = x ) -> ( w G u ) = u ) |
| 32 | 31 | adantll | |- ( ( ( G e. GrpOp /\ u e. X ) /\ A. x e. X ( w G x ) = x ) -> ( w G u ) = u ) |
| 33 | 32 | ad2ant2rl | |- ( ( ( ( G e. GrpOp /\ u e. X ) /\ w e. X ) /\ ( A. x e. X ( u G x ) = x /\ A. x e. X ( w G x ) = x ) ) -> ( w G u ) = u ) |
| 34 | 33 | adantllr | |- ( ( ( ( ( G e. GrpOp /\ u e. X ) /\ A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) ) /\ w e. X ) /\ ( A. x e. X ( u G x ) = x /\ A. x e. X ( w G x ) = x ) ) -> ( w G u ) = u ) |
| 35 | oveq2 | |- ( x = w -> ( u G x ) = ( u G w ) ) |
|
| 36 | id | |- ( x = w -> x = w ) |
|
| 37 | 35 36 | eqeq12d | |- ( x = w -> ( ( u G x ) = x <-> ( u G w ) = w ) ) |
| 38 | 37 | rspcva | |- ( ( w e. X /\ A. x e. X ( u G x ) = x ) -> ( u G w ) = w ) |
| 39 | 38 | ad2ant2lr | |- ( ( ( ( ( G e. GrpOp /\ u e. X ) /\ A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) ) /\ w e. X ) /\ ( A. x e. X ( u G x ) = x /\ A. x e. X ( w G x ) = x ) ) -> ( u G w ) = w ) |
| 40 | 27 34 39 | 3eqtr3d | |- ( ( ( ( ( G e. GrpOp /\ u e. X ) /\ A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) ) /\ w e. X ) /\ ( A. x e. X ( u G x ) = x /\ A. x e. X ( w G x ) = x ) ) -> u = w ) |
| 41 | 40 | ex | |- ( ( ( ( G e. GrpOp /\ u e. X ) /\ A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) ) /\ w e. X ) -> ( ( A. x e. X ( u G x ) = x /\ A. x e. X ( w G x ) = x ) -> u = w ) ) |
| 42 | 11 41 | mpand | |- ( ( ( ( G e. GrpOp /\ u e. X ) /\ A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) ) /\ w e. X ) -> ( A. x e. X ( w G x ) = x -> u = w ) ) |
| 43 | 42 | ralrimiva | |- ( ( ( G e. GrpOp /\ u e. X ) /\ A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) ) -> A. w e. X ( A. x e. X ( w G x ) = x -> u = w ) ) |
| 44 | 10 43 | jca | |- ( ( ( G e. GrpOp /\ u e. X ) /\ A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) ) -> ( A. x e. X ( u G x ) = x /\ A. w e. X ( A. x e. X ( w G x ) = x -> u = w ) ) ) |
| 45 | 44 | ex | |- ( ( G e. GrpOp /\ u e. X ) -> ( A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) -> ( A. x e. X ( u G x ) = x /\ A. w e. X ( A. x e. X ( w G x ) = x -> u = w ) ) ) ) |
| 46 | 45 | reximdva | |- ( G e. GrpOp -> ( E. u e. X A. z e. X ( ( ( u G z ) = z /\ ( z G u ) = z ) /\ E. y e. X ( ( y G z ) = u /\ ( z G y ) = u ) ) -> E. u e. X ( A. x e. X ( u G x ) = x /\ A. w e. X ( A. x e. X ( w G x ) = x -> u = w ) ) ) ) |
| 47 | 2 46 | mpd | |- ( G e. GrpOp -> E. u e. X ( A. x e. X ( u G x ) = x /\ A. w e. X ( A. x e. X ( w G x ) = x -> u = w ) ) ) |
| 48 | oveq1 | |- ( u = w -> ( u G x ) = ( w G x ) ) |
|
| 49 | 48 | eqeq1d | |- ( u = w -> ( ( u G x ) = x <-> ( w G x ) = x ) ) |
| 50 | 49 | ralbidv | |- ( u = w -> ( A. x e. X ( u G x ) = x <-> A. x e. X ( w G x ) = x ) ) |
| 51 | 50 | reu8 | |- ( E! u e. X A. x e. X ( u G x ) = x <-> E. u e. X ( A. x e. X ( u G x ) = x /\ A. w e. X ( A. x e. X ( w G x ) = x -> u = w ) ) ) |
| 52 | 47 51 | sylibr | |- ( G e. GrpOp -> E! u e. X A. x e. X ( u G x ) = x ) |