This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left group action of element A of group G maps the underlying set X of G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008) (Proof shortened by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplact.1 | ⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) ) | |
| grplact.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| grplact.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | grplactf1o | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplact.1 | ⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) ) | |
| 2 | grplact.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | grplact.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 5 | 1 2 3 4 | grplactcnv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) ) |
| 6 | 5 | simpld | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ) |