This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left group action of element A of group G maps the underlying set X of G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008) (Proof shortened by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplact.1 | |- F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) ) |
|
| grplact.2 | |- X = ( Base ` G ) |
||
| grplact.3 | |- .+ = ( +g ` G ) |
||
| grplactcnv.4 | |- I = ( invg ` G ) |
||
| Assertion | grplactcnv | |- ( ( G e. Grp /\ A e. X ) -> ( ( F ` A ) : X -1-1-onto-> X /\ `' ( F ` A ) = ( F ` ( I ` A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplact.1 | |- F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) ) |
|
| 2 | grplact.2 | |- X = ( Base ` G ) |
|
| 3 | grplact.3 | |- .+ = ( +g ` G ) |
|
| 4 | grplactcnv.4 | |- I = ( invg ` G ) |
|
| 5 | eqid | |- ( a e. X |-> ( A .+ a ) ) = ( a e. X |-> ( A .+ a ) ) |
|
| 6 | 2 3 | grpcl | |- ( ( G e. Grp /\ A e. X /\ a e. X ) -> ( A .+ a ) e. X ) |
| 7 | 6 | 3expa | |- ( ( ( G e. Grp /\ A e. X ) /\ a e. X ) -> ( A .+ a ) e. X ) |
| 8 | 2 4 | grpinvcl | |- ( ( G e. Grp /\ A e. X ) -> ( I ` A ) e. X ) |
| 9 | 2 3 | grpcl | |- ( ( G e. Grp /\ ( I ` A ) e. X /\ b e. X ) -> ( ( I ` A ) .+ b ) e. X ) |
| 10 | 9 | 3expa | |- ( ( ( G e. Grp /\ ( I ` A ) e. X ) /\ b e. X ) -> ( ( I ` A ) .+ b ) e. X ) |
| 11 | 8 10 | syldanl | |- ( ( ( G e. Grp /\ A e. X ) /\ b e. X ) -> ( ( I ` A ) .+ b ) e. X ) |
| 12 | eqcom | |- ( a = ( ( I ` A ) .+ b ) <-> ( ( I ` A ) .+ b ) = a ) |
|
| 13 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 14 | 2 3 13 4 | grplinv | |- ( ( G e. Grp /\ A e. X ) -> ( ( I ` A ) .+ A ) = ( 0g ` G ) ) |
| 15 | 14 | adantr | |- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( I ` A ) .+ A ) = ( 0g ` G ) ) |
| 16 | 15 | oveq1d | |- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( ( I ` A ) .+ A ) .+ a ) = ( ( 0g ` G ) .+ a ) ) |
| 17 | simpll | |- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> G e. Grp ) |
|
| 18 | 8 | adantr | |- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( I ` A ) e. X ) |
| 19 | simplr | |- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> A e. X ) |
|
| 20 | simprl | |- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> a e. X ) |
|
| 21 | 2 3 | grpass | |- ( ( G e. Grp /\ ( ( I ` A ) e. X /\ A e. X /\ a e. X ) ) -> ( ( ( I ` A ) .+ A ) .+ a ) = ( ( I ` A ) .+ ( A .+ a ) ) ) |
| 22 | 17 18 19 20 21 | syl13anc | |- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( ( I ` A ) .+ A ) .+ a ) = ( ( I ` A ) .+ ( A .+ a ) ) ) |
| 23 | 2 3 13 | grplid | |- ( ( G e. Grp /\ a e. X ) -> ( ( 0g ` G ) .+ a ) = a ) |
| 24 | 23 | ad2ant2r | |- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( 0g ` G ) .+ a ) = a ) |
| 25 | 16 22 24 | 3eqtr3rd | |- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> a = ( ( I ` A ) .+ ( A .+ a ) ) ) |
| 26 | 25 | eqeq2d | |- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( ( I ` A ) .+ b ) = a <-> ( ( I ` A ) .+ b ) = ( ( I ` A ) .+ ( A .+ a ) ) ) ) |
| 27 | 12 26 | bitrid | |- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( a = ( ( I ` A ) .+ b ) <-> ( ( I ` A ) .+ b ) = ( ( I ` A ) .+ ( A .+ a ) ) ) ) |
| 28 | simprr | |- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> b e. X ) |
|
| 29 | 7 | adantrr | |- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( A .+ a ) e. X ) |
| 30 | 2 3 | grplcan | |- ( ( G e. Grp /\ ( b e. X /\ ( A .+ a ) e. X /\ ( I ` A ) e. X ) ) -> ( ( ( I ` A ) .+ b ) = ( ( I ` A ) .+ ( A .+ a ) ) <-> b = ( A .+ a ) ) ) |
| 31 | 17 28 29 18 30 | syl13anc | |- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( ( I ` A ) .+ b ) = ( ( I ` A ) .+ ( A .+ a ) ) <-> b = ( A .+ a ) ) ) |
| 32 | 27 31 | bitrd | |- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( a = ( ( I ` A ) .+ b ) <-> b = ( A .+ a ) ) ) |
| 33 | 5 7 11 32 | f1ocnv2d | |- ( ( G e. Grp /\ A e. X ) -> ( ( a e. X |-> ( A .+ a ) ) : X -1-1-onto-> X /\ `' ( a e. X |-> ( A .+ a ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) ) ) |
| 34 | 1 2 | grplactfval | |- ( A e. X -> ( F ` A ) = ( a e. X |-> ( A .+ a ) ) ) |
| 35 | 34 | adantl | |- ( ( G e. Grp /\ A e. X ) -> ( F ` A ) = ( a e. X |-> ( A .+ a ) ) ) |
| 36 | 35 | f1oeq1d | |- ( ( G e. Grp /\ A e. X ) -> ( ( F ` A ) : X -1-1-onto-> X <-> ( a e. X |-> ( A .+ a ) ) : X -1-1-onto-> X ) ) |
| 37 | 35 | cnveqd | |- ( ( G e. Grp /\ A e. X ) -> `' ( F ` A ) = `' ( a e. X |-> ( A .+ a ) ) ) |
| 38 | 1 2 | grplactfval | |- ( ( I ` A ) e. X -> ( F ` ( I ` A ) ) = ( a e. X |-> ( ( I ` A ) .+ a ) ) ) |
| 39 | oveq2 | |- ( a = b -> ( ( I ` A ) .+ a ) = ( ( I ` A ) .+ b ) ) |
|
| 40 | 39 | cbvmptv | |- ( a e. X |-> ( ( I ` A ) .+ a ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) |
| 41 | 38 40 | eqtrdi | |- ( ( I ` A ) e. X -> ( F ` ( I ` A ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) ) |
| 42 | 8 41 | syl | |- ( ( G e. Grp /\ A e. X ) -> ( F ` ( I ` A ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) ) |
| 43 | 37 42 | eqeq12d | |- ( ( G e. Grp /\ A e. X ) -> ( `' ( F ` A ) = ( F ` ( I ` A ) ) <-> `' ( a e. X |-> ( A .+ a ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) ) ) |
| 44 | 36 43 | anbi12d | |- ( ( G e. Grp /\ A e. X ) -> ( ( ( F ` A ) : X -1-1-onto-> X /\ `' ( F ` A ) = ( F ` ( I ` A ) ) ) <-> ( ( a e. X |-> ( A .+ a ) ) : X -1-1-onto-> X /\ `' ( a e. X |-> ( A .+ a ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) ) ) ) |
| 45 | 33 44 | mpbird | |- ( ( G e. Grp /\ A e. X ) -> ( ( F ` A ) : X -1-1-onto-> X /\ `' ( F ` A ) = ( F ` ( I ` A ) ) ) ) |