This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010) (Revised by AV, 1-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplrinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grplrinv.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grplrinv.i | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | grpidinv2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( ( ( 0 + 𝐴 ) = 𝐴 ∧ ( 𝐴 + 0 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplrinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grplrinv.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grplrinv.i | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | 1 2 3 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( 0 + 𝐴 ) = 𝐴 ) |
| 5 | 1 2 3 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 + 0 ) = 𝐴 ) |
| 6 | 1 2 3 | grplrinv | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑦 ) = 0 ) ) |
| 7 | oveq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝑦 + 𝑧 ) = ( 𝑦 + 𝐴 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑦 + 𝑧 ) = 0 ↔ ( 𝑦 + 𝐴 ) = 0 ) ) |
| 9 | oveq1 | ⊢ ( 𝑧 = 𝐴 → ( 𝑧 + 𝑦 ) = ( 𝐴 + 𝑦 ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑧 + 𝑦 ) = 0 ↔ ( 𝐴 + 𝑦 ) = 0 ) ) |
| 11 | 8 10 | anbi12d | ⊢ ( 𝑧 = 𝐴 → ( ( ( 𝑦 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑦 ) = 0 ) ↔ ( ( 𝑦 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ) |
| 12 | 11 | rexbidv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑦 ) = 0 ) ↔ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ) |
| 13 | 12 | rspcv | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑧 ) = 0 ∧ ( 𝑧 + 𝑦 ) = 0 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ) |
| 14 | 6 13 | mpan9 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑦 ) = 0 ) ) |
| 15 | 4 5 14 | jca31 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( ( ( 0 + 𝐴 ) = 𝐴 ∧ ( 𝐴 + 0 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ) |