This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010) (Revised by AV, 1-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplrinv.b | |- B = ( Base ` G ) |
|
| grplrinv.p | |- .+ = ( +g ` G ) |
||
| grplrinv.i | |- .0. = ( 0g ` G ) |
||
| Assertion | grpidinv2 | |- ( ( G e. Grp /\ A e. B ) -> ( ( ( .0. .+ A ) = A /\ ( A .+ .0. ) = A ) /\ E. y e. B ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplrinv.b | |- B = ( Base ` G ) |
|
| 2 | grplrinv.p | |- .+ = ( +g ` G ) |
|
| 3 | grplrinv.i | |- .0. = ( 0g ` G ) |
|
| 4 | 1 2 3 | grplid | |- ( ( G e. Grp /\ A e. B ) -> ( .0. .+ A ) = A ) |
| 5 | 1 2 3 | grprid | |- ( ( G e. Grp /\ A e. B ) -> ( A .+ .0. ) = A ) |
| 6 | 1 2 3 | grplrinv | |- ( G e. Grp -> A. z e. B E. y e. B ( ( y .+ z ) = .0. /\ ( z .+ y ) = .0. ) ) |
| 7 | oveq2 | |- ( z = A -> ( y .+ z ) = ( y .+ A ) ) |
|
| 8 | 7 | eqeq1d | |- ( z = A -> ( ( y .+ z ) = .0. <-> ( y .+ A ) = .0. ) ) |
| 9 | oveq1 | |- ( z = A -> ( z .+ y ) = ( A .+ y ) ) |
|
| 10 | 9 | eqeq1d | |- ( z = A -> ( ( z .+ y ) = .0. <-> ( A .+ y ) = .0. ) ) |
| 11 | 8 10 | anbi12d | |- ( z = A -> ( ( ( y .+ z ) = .0. /\ ( z .+ y ) = .0. ) <-> ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) ) |
| 12 | 11 | rexbidv | |- ( z = A -> ( E. y e. B ( ( y .+ z ) = .0. /\ ( z .+ y ) = .0. ) <-> E. y e. B ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) ) |
| 13 | 12 | rspcv | |- ( A e. B -> ( A. z e. B E. y e. B ( ( y .+ z ) = .0. /\ ( z .+ y ) = .0. ) -> E. y e. B ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) ) |
| 14 | 6 13 | mpan9 | |- ( ( G e. Grp /\ A e. B ) -> E. y e. B ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) |
| 15 | 4 5 14 | jca31 | |- ( ( G e. Grp /\ A e. B ) -> ( ( ( .0. .+ A ) = A /\ ( A .+ .0. ) = A ) /\ E. y e. B ( ( y .+ A ) = .0. /\ ( A .+ y ) = .0. ) ) ) |