This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplrinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grplrinv.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grplrinv.i | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | grplrinv | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝑦 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplrinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grplrinv.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grplrinv.i | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 5 | 1 4 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 6 | oveq1 | ⊢ ( 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) → ( 𝑦 + 𝑥 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑥 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) → ( ( 𝑦 + 𝑥 ) = 0 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑥 ) = 0 ) ) |
| 8 | oveq2 | ⊢ ( 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) → ( ( 𝑥 + 𝑦 ) = 0 ↔ ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ) ) |
| 10 | 7 9 | anbi12d | ⊢ ( 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) → ( ( ( 𝑦 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝑦 ) = 0 ) ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑥 ) = 0 ∧ ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) → ( ( ( 𝑦 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝑦 ) = 0 ) ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑥 ) = 0 ∧ ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ) ) ) |
| 12 | 1 2 3 4 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑥 ) = 0 ) |
| 13 | 1 2 3 4 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ) |
| 14 | 12 13 | jca | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑥 ) = 0 ∧ ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ) ) |
| 15 | 5 11 14 | rspcedvd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝑦 ) = 0 ) ) |
| 16 | 15 | ralrimiva | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝑦 ) = 0 ) ) |