This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006) (Revised by AV, 1-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpidinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpidinv.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | grpidinv | ⊢ ( 𝐺 ∈ Grp → ∃ 𝑢 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑢 ∧ ( 𝑥 + 𝑦 ) = 𝑢 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpidinv.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 4 | 1 3 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 5 | oveq1 | ⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( 𝑢 + 𝑥 ) = ( ( 0g ‘ 𝐺 ) + 𝑥 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( ( 𝑢 + 𝑥 ) = 𝑥 ↔ ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ) ) |
| 7 | oveq2 | ⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( 𝑥 + 𝑢 ) = ( 𝑥 + ( 0g ‘ 𝐺 ) ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( ( 𝑥 + 𝑢 ) = 𝑥 ↔ ( 𝑥 + ( 0g ‘ 𝐺 ) ) = 𝑥 ) ) |
| 9 | 6 8 | anbi12d | ⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ↔ ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ( 𝑥 + ( 0g ‘ 𝐺 ) ) = 𝑥 ) ) ) |
| 10 | eqeq2 | ⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( ( 𝑦 + 𝑥 ) = 𝑢 ↔ ( 𝑦 + 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) | |
| 11 | eqeq2 | ⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( ( 𝑥 + 𝑦 ) = 𝑢 ↔ ( 𝑥 + 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) | |
| 12 | 10 11 | anbi12d | ⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( ( ( 𝑦 + 𝑥 ) = 𝑢 ∧ ( 𝑥 + 𝑦 ) = 𝑢 ) ↔ ( ( 𝑦 + 𝑥 ) = ( 0g ‘ 𝐺 ) ∧ ( 𝑥 + 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) ) |
| 13 | 12 | rexbidv | ⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑢 ∧ ( 𝑥 + 𝑦 ) = 𝑢 ) ↔ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = ( 0g ‘ 𝐺 ) ∧ ( 𝑥 + 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) ) |
| 14 | 9 13 | anbi12d | ⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( ( ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑢 ∧ ( 𝑥 + 𝑦 ) = 𝑢 ) ) ↔ ( ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ( 𝑥 + ( 0g ‘ 𝐺 ) ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = ( 0g ‘ 𝐺 ) ∧ ( 𝑥 + 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) ) ) |
| 15 | 14 | ralbidv | ⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑢 ∧ ( 𝑥 + 𝑦 ) = 𝑢 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ( 𝑥 + ( 0g ‘ 𝐺 ) ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = ( 0g ‘ 𝐺 ) ∧ ( 𝑥 + 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 = ( 0g ‘ 𝐺 ) ) → ( ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑢 ∧ ( 𝑥 + 𝑦 ) = 𝑢 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ( 𝑥 + ( 0g ‘ 𝐺 ) ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = ( 0g ‘ 𝐺 ) ∧ ( 𝑥 + 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) ) ) |
| 17 | 1 2 3 | grpidinv2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ( 𝑥 + ( 0g ‘ 𝐺 ) ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = ( 0g ‘ 𝐺 ) ∧ ( 𝑥 + 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) ) |
| 18 | 17 | ralrimiva | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ( ( ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ∧ ( 𝑥 + ( 0g ‘ 𝐺 ) ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = ( 0g ‘ 𝐺 ) ∧ ( 𝑥 + 𝑦 ) = ( 0g ‘ 𝐺 ) ) ) ) |
| 19 | 4 16 18 | rspcedvd | ⊢ ( 𝐺 ∈ Grp → ∃ 𝑢 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑢 ∧ ( 𝑥 + 𝑦 ) = 𝑢 ) ) ) |