This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Tarski-Grothendieck Axiom ax-groth expanded into set theory primitives using 163 symbols (allowing the defined symbols /\ , \/ , <-> , and E. ). An open problem is whether a shorter equivalent exists (when expanded to primitives). (Contributed by NM, 16-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grothprim | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axgroth4 | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) | |
| 2 | 3anass | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) ) | |
| 3 | df-ss | ⊢ ( 𝑤 ⊆ 𝑧 ↔ ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) ) | |
| 4 | elin | ⊢ ( 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ↔ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) | |
| 5 | 3 4 | imbi12i | ⊢ ( ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 7 | 6 | rexbii | ⊢ ( ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 8 | df-rex | ⊢ ( ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) | |
| 9 | 7 8 | bitri | ⊢ ( ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 10 | 9 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 11 | df-ral | ⊢ ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ) | |
| 12 | 10 11 | bitri | ⊢ ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ) |
| 13 | df-ss | ⊢ ( 𝑧 ⊆ 𝑦 ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) ) | |
| 14 | vex | ⊢ 𝑦 ∈ V | |
| 15 | 14 | difexi | ⊢ ( 𝑦 ∖ 𝑧 ) ∈ V |
| 16 | vex | ⊢ 𝑧 ∈ V | |
| 17 | disjdifr | ⊢ ( ( 𝑦 ∖ 𝑧 ) ∩ 𝑧 ) = ∅ | |
| 18 | 15 16 17 | brdom6disj | ⊢ ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ↔ ∃ 𝑤 ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ) |
| 19 | 18 | orbi1i | ⊢ ( ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ↔ ( ∃ 𝑤 ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) |
| 20 | 19.44v | ⊢ ( ∃ 𝑤 ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ↔ ( ∃ 𝑤 ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) | |
| 21 | 19 20 | bitr4i | ⊢ ( ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑤 ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) |
| 22 | 13 21 | imbi12i | ⊢ ( ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ∃ 𝑤 ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 23 | 19.35 | ⊢ ( ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) ↔ ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ∃ 𝑤 ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) ) | |
| 24 | 22 23 | bitr4i | ⊢ ( ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 25 | grothprimlem | ⊢ ( { 𝑣 , 𝑢 } ∈ 𝑤 ↔ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) ) | |
| 26 | 25 | mobii | ⊢ ( ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ↔ ∃* 𝑢 ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) ) |
| 27 | df-mo | ⊢ ( ∃* 𝑢 ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) ↔ ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) | |
| 28 | 26 27 | bitri | ⊢ ( ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ↔ ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) |
| 29 | 28 | ralbii | ⊢ ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ↔ ∀ 𝑣 ∈ 𝑧 ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) |
| 30 | df-ral | ⊢ ( ∀ 𝑣 ∈ 𝑧 ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ↔ ∀ 𝑣 ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ) | |
| 31 | 29 30 | bitri | ⊢ ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ↔ ∀ 𝑣 ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ) |
| 32 | df-ral | ⊢ ( ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ↔ ∀ 𝑣 ( 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) → ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ) | |
| 33 | eldif | ⊢ ( 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ↔ ( 𝑣 ∈ 𝑦 ∧ ¬ 𝑣 ∈ 𝑧 ) ) | |
| 34 | grothprimlem | ⊢ ( { 𝑢 , 𝑣 } ∈ 𝑤 ↔ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) | |
| 35 | 34 | rexbii | ⊢ ( ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ↔ ∃ 𝑢 ∈ 𝑧 ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) |
| 36 | df-rex | ⊢ ( ∃ 𝑢 ∈ 𝑧 ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ↔ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) | |
| 37 | 35 36 | bitri | ⊢ ( ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ↔ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) |
| 38 | 33 37 | imbi12i | ⊢ ( ( 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) → ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ↔ ( ( 𝑣 ∈ 𝑦 ∧ ¬ 𝑣 ∈ 𝑧 ) → ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) |
| 39 | pm5.6 | ⊢ ( ( ( 𝑣 ∈ 𝑦 ∧ ¬ 𝑣 ∈ 𝑧 ) → ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ↔ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) | |
| 40 | 38 39 | bitri | ⊢ ( ( 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) → ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ↔ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) |
| 41 | 40 | albii | ⊢ ( ∀ 𝑣 ( 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) → ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ↔ ∀ 𝑣 ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) |
| 42 | 32 41 | bitri | ⊢ ( ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ↔ ∀ 𝑣 ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) |
| 43 | 31 42 | anbi12i | ⊢ ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ↔ ( ∀ 𝑣 ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ∀ 𝑣 ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ) |
| 44 | 19.26 | ⊢ ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ↔ ( ∀ 𝑣 ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ∀ 𝑣 ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ) | |
| 45 | 43 44 | bitr4i | ⊢ ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ↔ ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ) |
| 46 | 45 | orbi1i | ⊢ ( ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ↔ ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) |
| 47 | 46 | imbi2i | ⊢ ( ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) ↔ ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 48 | 47 | exbii | ⊢ ( ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 49 | 24 48 | bitri | ⊢ ( ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 50 | 49 | albii | ⊢ ( ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∀ 𝑧 ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 51 | 12 50 | anbi12i | ⊢ ( ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∀ 𝑧 ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 52 | 19.26 | ⊢ ( ∀ 𝑧 ( ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∀ 𝑧 ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ) | |
| 53 | 51 52 | bitr4i | ⊢ ( ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ∀ 𝑧 ( ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 54 | 53 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ) ) |
| 55 | 2 54 | bitri | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ) ) |
| 56 | 55 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ) ) |
| 57 | 1 56 | mpbi | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ) |