This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Tarski-Grothendieck Axiom. For every set x there is an inaccessible cardinal y such that y is not in x . The addition of this axiom to ZFC set theory provides a framework for category theory, thus for all practical purposes giving us a complete foundation for "all of mathematics". This version of the axiom is used by the Mizar project ( http://www.mizar.org/JFM/Axiomatics/tarski.html ). Unlike the ZFC axioms, this axiom is very long when expressed in terms of primitive symbols (see grothprim ). An open problem is finding a shorter equivalent. (Contributed by NM, 18-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-groth | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | vy | ⊢ 𝑦 | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | 1 | cv | ⊢ 𝑥 |
| 3 | 0 | cv | ⊢ 𝑦 |
| 4 | 2 3 | wcel | ⊢ 𝑥 ∈ 𝑦 |
| 5 | vz | ⊢ 𝑧 | |
| 6 | vw | ⊢ 𝑤 | |
| 7 | 6 | cv | ⊢ 𝑤 |
| 8 | 5 | cv | ⊢ 𝑧 |
| 9 | 7 8 | wss | ⊢ 𝑤 ⊆ 𝑧 |
| 10 | 7 3 | wcel | ⊢ 𝑤 ∈ 𝑦 |
| 11 | 9 10 | wi | ⊢ ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) |
| 12 | 11 6 | wal | ⊢ ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) |
| 13 | vv | ⊢ 𝑣 | |
| 14 | 13 | cv | ⊢ 𝑣 |
| 15 | 14 8 | wss | ⊢ 𝑣 ⊆ 𝑧 |
| 16 | 14 7 | wcel | ⊢ 𝑣 ∈ 𝑤 |
| 17 | 15 16 | wi | ⊢ ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) |
| 18 | 17 13 | wal | ⊢ ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) |
| 19 | 18 6 3 | wrex | ⊢ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) |
| 20 | 12 19 | wa | ⊢ ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) |
| 21 | 20 5 3 | wral | ⊢ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) |
| 22 | 8 3 | wss | ⊢ 𝑧 ⊆ 𝑦 |
| 23 | cen | ⊢ ≈ | |
| 24 | 8 3 23 | wbr | ⊢ 𝑧 ≈ 𝑦 |
| 25 | 8 3 | wcel | ⊢ 𝑧 ∈ 𝑦 |
| 26 | 24 25 | wo | ⊢ ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) |
| 27 | 22 26 | wi | ⊢ ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) |
| 28 | 27 5 | wal | ⊢ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) |
| 29 | 4 21 28 | w3a | ⊢ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 30 | 29 0 | wex | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |