This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate version of the Tarski-Grothendieck Axiom. ax-ac is used to derive this version. (Contributed by NM, 16-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axgroth4 | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axgroth3 | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) | |
| 2 | elequ2 | ⊢ ( 𝑤 = 𝑣 → ( 𝑢 ∈ 𝑤 ↔ 𝑢 ∈ 𝑣 ) ) | |
| 3 | 2 | imbi2d | ⊢ ( 𝑤 = 𝑣 → ( ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ↔ ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ) |
| 4 | 3 | albidv | ⊢ ( 𝑤 = 𝑣 → ( ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ↔ ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ) |
| 5 | 4 | cbvrexvw | ⊢ ( ∃ 𝑤 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ↔ ∃ 𝑣 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) |
| 6 | 5 | anbi2i | ⊢ ( ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ) ↔ ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑣 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ) |
| 7 | r19.42v | ⊢ ( ∃ 𝑣 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ↔ ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑣 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ) | |
| 8 | sseq1 | ⊢ ( 𝑢 = 𝑤 → ( 𝑢 ⊆ 𝑧 ↔ 𝑤 ⊆ 𝑧 ) ) | |
| 9 | elequ1 | ⊢ ( 𝑢 = 𝑤 → ( 𝑢 ∈ 𝑣 ↔ 𝑤 ∈ 𝑣 ) ) | |
| 10 | 8 9 | imbi12d | ⊢ ( 𝑢 = 𝑤 → ( ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ↔ ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) ) |
| 11 | 10 | cbvalvw | ⊢ ( ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ↔ ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) |
| 12 | 11 | anbi2i | ⊢ ( ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ↔ ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) ) |
| 13 | 19.26 | ⊢ ( ∀ 𝑤 ( ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) ↔ ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) ) | |
| 14 | pm4.76 | ⊢ ( ( ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) ↔ ( 𝑤 ⊆ 𝑧 → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) | |
| 15 | elin | ⊢ ( 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ↔ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) | |
| 16 | 15 | imbi2i | ⊢ ( ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ( 𝑤 ⊆ 𝑧 → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 17 | 14 16 | bitr4i | ⊢ ( ( ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) ↔ ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ) |
| 18 | 17 | albii | ⊢ ( ∀ 𝑤 ( ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣 ) ) ↔ ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ) |
| 19 | 12 13 18 | 3bitr2i | ⊢ ( ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ↔ ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ) |
| 20 | 19 | rexbii | ⊢ ( ∃ 𝑣 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣 ) ) ↔ ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ) |
| 21 | 6 7 20 | 3bitr2i | ⊢ ( ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ) ↔ ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ) |
| 22 | 21 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ) |
| 23 | 22 | 3anbi2i | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 24 | 23 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑢 ( 𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 25 | 1 24 | mpbi | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |