This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grothtsk | ⊢ ∪ Tarski = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axgroth5 | ⊢ ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) | |
| 2 | eltskg | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ Tarski ↔ ( ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑥 ∈ Tarski ↔ ( ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) ) |
| 4 | 3 | anbi2i | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski ) ↔ ( 𝑤 ∈ 𝑥 ∧ ( ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) ) ) |
| 5 | 3anass | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) ↔ ( 𝑤 ∈ 𝑥 ∧ ( ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) ) ) | |
| 6 | 4 5 | bitr4i | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski ) ↔ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski ) ↔ ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝒫 𝑦 ⊆ 𝑥 ∧ ∃ 𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) ) |
| 8 | 1 7 | mpbir | ⊢ ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski ) |
| 9 | eluni | ⊢ ( 𝑤 ∈ ∪ Tarski ↔ ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski ) ) | |
| 10 | 8 9 | mpbir | ⊢ 𝑤 ∈ ∪ Tarski |
| 11 | vex | ⊢ 𝑤 ∈ V | |
| 12 | 10 11 | 2th | ⊢ ( 𝑤 ∈ ∪ Tarski ↔ 𝑤 ∈ V ) |
| 13 | 12 | eqriv | ⊢ ∪ Tarski = V |