This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Tarski-Grothendieck Axiom implies the Axiom of Infinity (in the form of omex ). Note that our proof depends on neither the Axiom of Infinity nor Regularity. (Contributed by Mario Carneiro, 19-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grothomex | ⊢ ω ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r111 | ⊢ 𝑅1 : On –1-1→ V | |
| 2 | omsson | ⊢ ω ⊆ On | |
| 3 | f1ores | ⊢ ( ( 𝑅1 : On –1-1→ V ∧ ω ⊆ On ) → ( 𝑅1 ↾ ω ) : ω –1-1-onto→ ( 𝑅1 “ ω ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝑅1 ↾ ω ) : ω –1-1-onto→ ( 𝑅1 “ ω ) |
| 5 | f1of1 | ⊢ ( ( 𝑅1 ↾ ω ) : ω –1-1-onto→ ( 𝑅1 “ ω ) → ( 𝑅1 ↾ ω ) : ω –1-1→ ( 𝑅1 “ ω ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( 𝑅1 ↾ ω ) : ω –1-1→ ( 𝑅1 “ ω ) |
| 7 | r1fnon | ⊢ 𝑅1 Fn On | |
| 8 | fvelimab | ⊢ ( ( 𝑅1 Fn On ∧ ω ⊆ On ) → ( 𝑤 ∈ ( 𝑅1 “ ω ) ↔ ∃ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = 𝑤 ) ) | |
| 9 | 7 2 8 | mp2an | ⊢ ( 𝑤 ∈ ( 𝑅1 “ ω ) ↔ ∃ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = 𝑤 ) |
| 10 | fveq2 | ⊢ ( 𝑥 = ∅ → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ ∅ ) ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑥 = ∅ → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑦 ↔ ( 𝑅1 ‘ ∅ ) ∈ 𝑦 ) ) |
| 12 | fveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑤 ) ) | |
| 13 | 12 | eleq1d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑦 ↔ ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 ) ) |
| 14 | fveq2 | ⊢ ( 𝑥 = suc 𝑤 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑤 ) ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑥 = suc 𝑤 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑦 ↔ ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ) ) |
| 16 | r10 | ⊢ ( 𝑅1 ‘ ∅ ) = ∅ | |
| 17 | 16 | eleq1i | ⊢ ( ( 𝑅1 ‘ ∅ ) ∈ 𝑦 ↔ ∅ ∈ 𝑦 ) |
| 18 | 17 | biimpri | ⊢ ( ∅ ∈ 𝑦 → ( 𝑅1 ‘ ∅ ) ∈ 𝑦 ) |
| 19 | 18 | adantr | ⊢ ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → ( 𝑅1 ‘ ∅ ) ∈ 𝑦 ) |
| 20 | pweq | ⊢ ( 𝑧 = ( 𝑅1 ‘ 𝑤 ) → 𝒫 𝑧 = 𝒫 ( 𝑅1 ‘ 𝑤 ) ) | |
| 21 | 20 | eleq1d | ⊢ ( 𝑧 = ( 𝑅1 ‘ 𝑤 ) → ( 𝒫 𝑧 ∈ 𝑦 ↔ 𝒫 ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 ) ) |
| 22 | 21 | rspccv | ⊢ ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 → ( ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 → 𝒫 ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 ) ) |
| 23 | nnon | ⊢ ( 𝑤 ∈ ω → 𝑤 ∈ On ) | |
| 24 | r1suc | ⊢ ( 𝑤 ∈ On → ( 𝑅1 ‘ suc 𝑤 ) = 𝒫 ( 𝑅1 ‘ 𝑤 ) ) | |
| 25 | 23 24 | syl | ⊢ ( 𝑤 ∈ ω → ( 𝑅1 ‘ suc 𝑤 ) = 𝒫 ( 𝑅1 ‘ 𝑤 ) ) |
| 26 | 25 | eleq1d | ⊢ ( 𝑤 ∈ ω → ( ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ↔ 𝒫 ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 ) ) |
| 27 | 26 | biimprcd | ⊢ ( 𝒫 ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 → ( 𝑤 ∈ ω → ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ) ) |
| 28 | 22 27 | syl6 | ⊢ ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 → ( ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 → ( 𝑤 ∈ ω → ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ) ) ) |
| 29 | 28 | com3r | ⊢ ( 𝑤 ∈ ω → ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 → ( ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 → ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ) ) ) |
| 30 | 29 | adantld | ⊢ ( 𝑤 ∈ ω → ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → ( ( 𝑅1 ‘ 𝑤 ) ∈ 𝑦 → ( 𝑅1 ‘ suc 𝑤 ) ∈ 𝑦 ) ) ) |
| 31 | 11 13 15 19 30 | finds2 | ⊢ ( 𝑥 ∈ ω → ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑦 ) ) |
| 32 | eleq1 | ⊢ ( ( 𝑅1 ‘ 𝑥 ) = 𝑤 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ) | |
| 33 | 32 | biimpd | ⊢ ( ( 𝑅1 ‘ 𝑥 ) = 𝑤 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑦 → 𝑤 ∈ 𝑦 ) ) |
| 34 | 31 33 | syl9 | ⊢ ( 𝑥 ∈ ω → ( ( 𝑅1 ‘ 𝑥 ) = 𝑤 → ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → 𝑤 ∈ 𝑦 ) ) ) |
| 35 | 34 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = 𝑤 → ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → 𝑤 ∈ 𝑦 ) ) |
| 36 | 9 35 | sylbi | ⊢ ( 𝑤 ∈ ( 𝑅1 “ ω ) → ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → 𝑤 ∈ 𝑦 ) ) |
| 37 | 36 | com12 | ⊢ ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → ( 𝑤 ∈ ( 𝑅1 “ ω ) → 𝑤 ∈ 𝑦 ) ) |
| 38 | 37 | ssrdv | ⊢ ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → ( 𝑅1 “ ω ) ⊆ 𝑦 ) |
| 39 | vex | ⊢ 𝑦 ∈ V | |
| 40 | 39 | ssex | ⊢ ( ( 𝑅1 “ ω ) ⊆ 𝑦 → ( 𝑅1 “ ω ) ∈ V ) |
| 41 | 38 40 | syl | ⊢ ( ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) → ( 𝑅1 “ ω ) ∈ V ) |
| 42 | 0ex | ⊢ ∅ ∈ V | |
| 43 | eleq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ 𝑦 ↔ ∅ ∈ 𝑦 ) ) | |
| 44 | 43 | anbi1d | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) ↔ ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) ) ) |
| 45 | 44 | exbidv | ⊢ ( 𝑥 = ∅ → ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑦 ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) ) ) |
| 46 | axgroth6 | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ) | |
| 47 | simpr | ⊢ ( ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) → 𝒫 𝑧 ∈ 𝑦 ) | |
| 48 | 47 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) → ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) |
| 49 | 48 | anim2i | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) ) → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) ) |
| 50 | 49 | 3adant3 | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ) → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) ) |
| 51 | 46 50 | eximii | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) |
| 52 | 42 45 51 | vtocl | ⊢ ∃ 𝑦 ( ∅ ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) |
| 53 | 41 52 | exlimiiv | ⊢ ( 𝑅1 “ ω ) ∈ V |
| 54 | f1dmex | ⊢ ( ( ( 𝑅1 ↾ ω ) : ω –1-1→ ( 𝑅1 “ ω ) ∧ ( 𝑅1 “ ω ) ∈ V ) → ω ∈ V ) | |
| 55 | 6 53 54 | mp2an | ⊢ ω ∈ V |