This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cumulative hierarchy is a one-to-one function. (Contributed by Mario Carneiro, 19-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r111 | ⊢ 𝑅1 : On –1-1→ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1fnon | ⊢ 𝑅1 Fn On | |
| 2 | dffn2 | ⊢ ( 𝑅1 Fn On ↔ 𝑅1 : On ⟶ V ) | |
| 3 | 1 2 | mpbi | ⊢ 𝑅1 : On ⟶ V |
| 4 | eloni | ⊢ ( 𝑥 ∈ On → Ord 𝑥 ) | |
| 5 | eloni | ⊢ ( 𝑦 ∈ On → Ord 𝑦 ) | |
| 6 | ordtri3or | ⊢ ( ( Ord 𝑥 ∧ Ord 𝑦 ) → ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
| 8 | sdomirr | ⊢ ¬ ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑦 ) | |
| 9 | r1sdom | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝑥 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) | |
| 10 | breq1 | ⊢ ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → ( ( 𝑅1 ‘ 𝑥 ) ≺ ( 𝑅1 ‘ 𝑦 ) ↔ ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 11 | 9 10 | syl5ibcom | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 12 | 8 11 | mtoi | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) → ¬ ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) |
| 13 | 12 | 3adant1 | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) → ¬ ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) |
| 14 | 13 | pm2.21d | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 15 | 14 | 3expia | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 ∈ 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 16 | ax-1 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) | |
| 17 | 16 | a1i | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 = 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 18 | r1sdom | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) | |
| 19 | breq2 | ⊢ ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → ( ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 20 | 18 19 | syl5ibcom | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 21 | 8 20 | mtoi | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ¬ ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) |
| 22 | 21 | 3adant2 | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ¬ ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) |
| 23 | 22 | pm2.21d | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 24 | 23 | 3expia | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑦 ∈ 𝑥 → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 25 | 15 17 24 | 3jaod | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 26 | 7 25 | mpd | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 27 | 26 | rgen2 | ⊢ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
| 28 | dff13 | ⊢ ( 𝑅1 : On –1-1→ V ↔ ( 𝑅1 : On ⟶ V ∧ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 29 | 3 27 28 | mpbir2an | ⊢ 𝑅1 : On –1-1→ V |